These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 19399903)
1. Effect of periplasmic nitrate reductase on diauxic lag of Paracoccus pantotrophus. Durvasula K; Jantama K; Fischer K; Vega A; Koopman B; Svoronos SA Biotechnol Prog; 2009; 25(4):973-9. PubMed ID: 19399903 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the nap operon encoding the periplasmic nitrate reductase of Paracoccus pantotrophus: delineation of DNA sequences required for redox control. Ellington MJ; Fosdike WL; Sawers RG; Richardson DJ; Ferguson SJ Arch Microbiol; 2006 Jan; 184(5):298-304. PubMed ID: 16333617 [TBL] [Abstract][Full Text] [Related]
3. Effect of carbon substrate on electron acceptor diauxic lag and anoxic maximum specific growth rate in species with and without periplasmic enzyme. Casasús AI; Lee DU; Hamilton RK; Svoronos SA; Koopman B J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jan; 42(1):103-8. PubMed ID: 17129955 [TBL] [Abstract][Full Text] [Related]
4. Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Sears HJ; Sawers G; Berks BC; Ferguson SJ; Richardson DJ Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2977-2985. PubMed ID: 11065376 [TBL] [Abstract][Full Text] [Related]
5. A simple model for diauxic growth of denitrifying bacteria. Casasús AI; Hamilton RK; Svoronos SA; Koopman B Water Res; 2005 May; 39(9):1914-20. PubMed ID: 15899290 [TBL] [Abstract][Full Text] [Related]
6. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential. Gates AJ; Richardson DJ; Butt JN Biochem J; 2008 Jan; 409(1):159-68. PubMed ID: 17900239 [TBL] [Abstract][Full Text] [Related]
7. Hierarchy of carbon source selection in Paracoccus pantotrophus: strict correlation between reduction state of the carbon substrate and aerobic expression of the nap operon. Ellington MJ; Bhakoo KK; Sawers G; Richardson DJ; Ferguson SJ J Bacteriol; 2002 Sep; 184(17):4767-74. PubMed ID: 12169601 [TBL] [Abstract][Full Text] [Related]
8. Influence of alternating oxic/anoxic conditions on growth of denitrifying bacteria. Lee DU; Woo SH; Svoronos S; Koopman B Water Res; 2010 Mar; 44(6):1819-24. PubMed ID: 20045547 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration. Kern M; Simon J Mol Microbiol; 2008 Sep; 69(5):1137-52. PubMed ID: 18631238 [TBL] [Abstract][Full Text] [Related]
10. Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Potter LC; Millington P; Griffiths L; Thomas GH; Cole JA Biochem J; 1999 Nov; 344 Pt 1(Pt 1):77-84. PubMed ID: 10548536 [TBL] [Abstract][Full Text] [Related]
11. A dual functional redox enzyme maturation protein for respiratory and assimilatory nitrate reductases in bacteria. Pinchbeck BJ; Soriano-Laguna MJ; Sullivan MJ; Luque-Almagro VM; Rowley G; Ferguson SJ; Roldán MD; Richardson DJ; Gates AJ Mol Microbiol; 2019 Jun; 111(6):1592-1603. PubMed ID: 30875449 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the expression and activity of the periplasmic nitrate reductase of Paracoccus pantotrophus in chemostat cultures. Ellington MJK; Sawers G; Sears HJ; Spiro S; Richardson DJ; Ferguson SJ Microbiology (Reading); 2003 Jun; 149(Pt 6):1533-1540. PubMed ID: 12777493 [TBL] [Abstract][Full Text] [Related]
13. Structured model for denitrifier diauxic growth. Hamilton R; Casasús A; Rasche M; Narang A; Svoronos SA; Koopman B Biotechnol Bioeng; 2005 May; 90(4):501-8. PubMed ID: 15803468 [TBL] [Abstract][Full Text] [Related]
14. DksA, ppGpp, and RegAB Regulate Nitrate Respiration in Paracoccus denitrificans. Ray A; Spiro S J Bacteriol; 2023 Apr; 205(4):e0002723. PubMed ID: 36920204 [TBL] [Abstract][Full Text] [Related]
15. Sulfur oxidation of Paracoccus pantotrophus: the sulfur-binding protein SoxYZ is the target of the periplasmic thiol-disulfide oxidoreductase SoxS. Rother D; Ringk J; Friedrich CG Microbiology (Reading); 2008 Jul; 154(Pt 7):1980-1988. PubMed ID: 18599826 [TBL] [Abstract][Full Text] [Related]
16. Nar is the dominant dissimilatory nitrate reductase under high pressure conditions in the deep-sea denitrifier Pseudomonas sp. MT-1. Oikawa Y; Sinmura Y; Ishizaka H; Midorikawa R; Kawamoto J; Kurihara T; Kato C; Horikoshi K; Tamegai H J Gen Appl Microbiol; 2015; 61(1):10-4. PubMed ID: 25833675 [TBL] [Abstract][Full Text] [Related]
17. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources. Otani Y; Hasegawa K; Hanaki K Water Sci Technol; 2004; 50(8):15-22. PubMed ID: 15566182 [TBL] [Abstract][Full Text] [Related]
18. Differential regulation of periplasmic nitrate reductase gene (napKEFDABC) expression between aerobiosis and anaerobiosis with nitrate in a denitrifying phototroph Rhodobacter sphaeroides f. sp. denitrificans. Tabata A; Yamamoto I; Matsuzaki M; Satoh T Arch Microbiol; 2005 Nov; 184(2):108-16. PubMed ID: 16136296 [TBL] [Abstract][Full Text] [Related]
19. Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12. Stewart V; Lu Y; Darwin AJ J Bacteriol; 2002 Mar; 184(5):1314-23. PubMed ID: 11844760 [TBL] [Abstract][Full Text] [Related]
20. Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten-supplemented media. Gates AJ; Hughes RO; Sharp SR; Millington PD; Nilavongse A; Cole JA; Leach ER; Jepson B; Richardson DJ; Butler CS FEMS Microbiol Lett; 2003 Mar; 220(2):261-9. PubMed ID: 12670690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]