BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19399913)

  • 1. Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae.
    Sporty J; Lin SJ; Kato M; Ognibene T; Stewart B; Turteltaub K; Bench G
    Yeast; 2009 Jul; 26(7):363-9. PubMed ID: 19399913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why do some yeast species require niacin for growth? Different modes of NAD synthesis.
    Li YF; Bao WG
    FEMS Yeast Res; 2007 Aug; 7(5):657-64. PubMed ID: 17425674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae.
    Ohashi K; Kawai S; Murata K
    Eukaryot Cell; 2013 May; 12(5):648-53. PubMed ID: 23457190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate
    James Theoga Raj C; Croft T; Venkatakrishnan P; Groth B; Dhugga G; Cater T; Lin SJ
    J Biol Chem; 2019 Apr; 294(14):5562-5575. PubMed ID: 30760525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of protein copy number in yeast: the NAD+ metabolome.
    Mei SC; Brenner C
    PLoS One; 2014; 9(9):e106496. PubMed ID: 25188219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox responses in yeast to acetate as the carbon source.
    Minard KI; McAlister-Henn L
    Arch Biochem Biophys; 2009 Mar; 483(1):136-43. PubMed ID: 19138656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis.
    Wang G; Pichersky E
    Plant J; 2007 Mar; 49(6):1020-9. PubMed ID: 17335512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.
    Belenky P; Racette FG; Bogan KL; McClure JM; Smith JS; Brenner C
    Cell; 2007 May; 129(3):473-84. PubMed ID: 17482543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.
    Mei SC; Brenner C
    PLoS Biol; 2015 Jan; 13(1):e1002048. PubMed ID: 25633578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae.
    Bedalov A; Hirao M; Posakony J; Nelson M; Simon JA
    Mol Cell Biol; 2003 Oct; 23(19):7044-54. PubMed ID: 12972620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single sample extraction protocol for the quantification of NAD and NADH redox states in Saccharomyces cerevisiae.
    Sporty JL; Kabir MM; Turteltaub KW; Ognibene T; Lin SJ; Bench G
    J Sep Sci; 2008 Oct; 31(18):3202-11. PubMed ID: 18763242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dihydrolipoyl dehydrogenase as a source of reactive oxygen species inhibited by caloric restriction and involved in Saccharomyces cerevisiae aging.
    Tahara EB; Barros MH; Oliveira GA; Netto LE; Kowaltowski AJ
    FASEB J; 2007 Jan; 21(1):274-83. PubMed ID: 17110466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential role of Bordetella NadC in a quinolinate salvage pathway for NAD biosynthesis.
    Brickman TJ; Suhadolc RJ; McKelvey PJ; Armstrong SK
    Mol Microbiol; 2017 Feb; 103(3):423-438. PubMed ID: 27783449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae.
    Lu SP; Kato M; Lin SJ
    J Biol Chem; 2009 Jun; 284(25):17110-17119. PubMed ID: 19416965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant.
    Jain VK; Divol B; Prior BA; Bauer FF
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):131-41. PubMed ID: 21720823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside.
    Bogan KL; Evans C; Belenky P; Song P; Burant CF; Kennedy R; Brenner C
    J Biol Chem; 2009 Dec; 284(50):34861-9. PubMed ID: 19846558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae.
    Panozzo C; Nawara M; Suski C; Kucharczyka R; Skoneczny M; Bécam AM; Rytka J; Herbert CJ
    FEBS Lett; 2002 Apr; 517(1-3):97-102. PubMed ID: 12062417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli.
    Berríos-Rivera SJ; San KY; Bennett GN
    Metab Eng; 2002 Jul; 4(3):238-47. PubMed ID: 12616693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.
    Kulikova V; Shabalin K; Nerinovski K; Dölle C; Niere M; Yakimov A; Redpath P; Khodorkovskiy M; Migaud ME; Ziegler M; Nikiforov A
    J Biol Chem; 2015 Nov; 290(45):27124-27137. PubMed ID: 26385918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae.
    Tsang F; James C; Kato M; Myers V; Ilyas I; Tsang M; Lin SJ
    J Biol Chem; 2015 May; 290(20):12753-64. PubMed ID: 25825491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.