BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19399930)

  • 1. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model.
    Frontela C; Scarino ML; Ferruzza S; Ros G; Martínez C
    World J Gastroenterol; 2009 Apr; 15(16):1977-84. PubMed ID: 19399930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioavailability in infants of iron from infant cereals: effect of dephytinization.
    Davidsson L; Galan P; Cherouvrier F; Kastenmayer P; Juillerat MA; Hercberg S; Hurrell RF
    Am J Clin Nutr; 1997 Apr; 65(4):916-20. PubMed ID: 9094872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dephytinization and follow-on formula addition on in vitro iron, calcium, and zinc availability from infant cereals.
    Frontela C; Haro JF; Ros G; Martínez C
    J Agric Food Chem; 2008 May; 56(10):3805-11. PubMed ID: 18433137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of weaning cereals with different phytate contents on hemoglobin, iron stores, and serum zinc: a randomized intervention in infants from 6 to 12 mo of age.
    Lind T; Lönnerdal B; Persson LA; Stenlund H; Tennefors C; Hernell O
    Am J Clin Nutr; 2003 Jul; 78(1):168-75. PubMed ID: 12816787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide.
    Brnić M; Wegmüller R; Zeder C; Senti G; Hurrell RF
    J Nutr; 2014 Sep; 144(9):1467-73. PubMed ID: 24966411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects.
    Hurrell RF; Reddy MB; Juillerat MA; Cook JD
    Am J Clin Nutr; 2003 May; 77(5):1213-9. PubMed ID: 12716674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening for anti-nutritional compounds in complementary foods and food aid products for infants and young children.
    Roos N; Sørensen JC; Sørensen H; Rasmussen SK; Briend A; Yang Z; Huffman SL
    Matern Child Nutr; 2013 Jan; 9 Suppl 1(Suppl 1):47-71. PubMed ID: 23167584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sweetpotato-based complementary food would be less inhibitory on mineral absorption than a maize-based infant food assessed by compositional analysis.
    Amagloh FK; Brough L; Weber JL; Mutukumira AN; Hardacre A; Coad J
    Int J Food Sci Nutr; 2012 Dec; 63(8):957-63. PubMed ID: 22594854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes?
    Elliott H; Woods P; Green BD; Nugent AP
    Nutr Bull; 2022 Jun; 47(2):138-156. PubMed ID: 36045098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytic acid degradation as a means of improving iron absorption.
    Hurrell RF
    Int J Vitam Nutr Res; 2004 Nov; 74(6):445-52. PubMed ID: 15743020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Household dietary strategies to enhance the content and bioavailability of iron, zinc and calcium of selected rice- and maize-based Philippine complementary foods.
    Perlas LA; Gibson RS
    Matern Child Nutr; 2005 Oct; 1(4):263-73. PubMed ID: 16881908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary feeding and effect of spontaneous fermentation on anti-nutritional factors of selected cereal-based complementary foods.
    Asres DT; Nana A; Nega G
    BMC Pediatr; 2018 Dec; 18(1):394. PubMed ID: 30579346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of weaning cereals with different phytate content on growth, development and morbidity: a randomized intervention trial in infants from 6 to 12 months of age.
    Lind T; Persson L; Lönnerdal B; Stenlund H; Hernell O
    Acta Paediatr; 2004 Dec; 93(12):1575-82. PubMed ID: 15841764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium, iron, and zinc uptake from digests of infant formulas by Caco-2 cells.
    Jovaní M; Barberá R; Farré R; Martín de Aguilera E
    J Agric Food Chem; 2001 Jul; 49(7):3480-5. PubMed ID: 11453795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of different cereal grains on iron absorption from infant cereal foods.
    Cook JD; Reddy MB; Burri J; Juillerat MA; Hurrell RF
    Am J Clin Nutr; 1997 Apr; 65(4):964-9. PubMed ID: 9094880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability.
    Sanz-Penella JM; Frontela C; Ros G; Martinez C; Monedero V; Haros M
    J Agric Food Chem; 2012 Nov; 60(47):11787-92. PubMed ID: 23151205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods.
    Troesch B; Jing H; Laillou A; Fowler A
    Food Nutr Bull; 2013 Jun; 34(2 Suppl):S90-101. PubMed ID: 24050000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary foods for infant feeding in developing countries: their nutrient adequacy and improvement.
    Gibson RS; Ferguson EL; Lehrfeld J
    Eur J Clin Nutr; 1998 Oct; 52(10):764-70. PubMed ID: 9805226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.