These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 1940078)

  • 1. Stepping over obstacles: gait patterns of healthy young and old adults.
    Chen HC; Ashton-Miller JA; Alexander NB; Schultz AB
    J Gerontol; 1991 Nov; 46(6):M196-203. PubMed ID: 1940078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping.
    Chou LS; Draganich LF
    J Biomech; 1998 Aug; 31(8):685-91. PubMed ID: 9796668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Aging on the Obstacle Negotiation Strategy while Stepping over Multiple Obstacles.
    Chien JH; Post J; Siu KC
    Sci Rep; 2018 Jun; 8(1):8576. PubMed ID: 29872074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepping over an obstacle increases the motions and moments of the joints of the trailing limb in young adults.
    Chou LS; Draganich LF
    J Biomech; 1997 Apr; 30(4):331-7. PubMed ID: 9075000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic analysis of obstacle clearance during locomotion.
    Austin GP; Garrett GE; Bohannon RW
    Gait Posture; 1999 Oct; 10(2):109-20. PubMed ID: 10502644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Best-compromise between mechanical energy expenditure and foot clearance predicts leading limb motion during obstacle-crossing.
    Lu TW; Chen SC; Chiu HC
    Gait Posture; 2012 Jul; 36(3):552-6. PubMed ID: 22749952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the control of obstacle crossing in middle age become evident as gait task difficulty increases.
    Muir BC; Haddad JM; van Emmerik REA; Rietdyk S
    Gait Posture; 2019 May; 70():254-259. PubMed ID: 30909004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obstacle crossing deficits in older adults: a systematic review.
    Galna B; Peters A; Murphy AT; Morris ME
    Gait Posture; 2009 Oct; 30(3):270-5. PubMed ID: 19625191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of age and available response time on ability to step over an obstacle.
    Chen HC; Ashton-Miller JA; Alexander NB; Schultz AB
    J Gerontol; 1994 Sep; 49(5):M227-33. PubMed ID: 8056942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restricting ankle motion via orthotic bracing reduces toe clearance when walking over obstacles.
    Evangelopoulou E; Twiste M; Buckley JG
    Gait Posture; 2016 Jan; 43():251-6. PubMed ID: 26520598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Obstacle crossing in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2007 Oct; 26(4):587-94. PubMed ID: 17275306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical risk factors for tripping during obstacle--Crossing with the trailing limb in patients with type II diabetes mellitus.
    Hsu WC; Liu MW; Lu TW
    Gait Posture; 2016 Mar; 45():103-9. PubMed ID: 26979890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of walking speed on obstacle crossing in healthy young and healthy older adults.
    Draganich LF; Kuo CE
    J Biomech; 2004 Jun; 37(6):889-96. PubMed ID: 15111076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Healthy younger and older adults control foot placement to avoid small obstacles during gait primarily by modulating step width.
    Schulz BW
    J Neuroeng Rehabil; 2012 Oct; 9():69. PubMed ID: 23034093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in avoidance strategies when negotiating single and multiple obstacles.
    Lowrey CR; Watson A; Vallis LA
    Exp Brain Res; 2007 Sep; 182(3):289-99. PubMed ID: 17551718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stepping over obstacles: attention demands and aging.
    Harley C; Wilkie RM; Wann JP
    Gait Posture; 2009 Apr; 29(3):428-32. PubMed ID: 19084412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging effects on leg joint variability during walking with balance perturbations.
    Qiao M; Feld JA; Franz JR
    Gait Posture; 2018 May; 62():27-33. PubMed ID: 29510323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights.
    Lu TW; Chen HL; Chen SC
    Gait Posture; 2006 Jun; 23(4):471-9. PubMed ID: 16023346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle.
    Begg RK; Sparrow WA
    J Med Eng Technol; 2006; 30(6):382-9. PubMed ID: 17060166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of shoe heel height on the end-point and joint kinematics of the locomotor system when crossing obstacles of different heights.
    Chien HL; Lu TW
    Ergonomics; 2017 Mar; 60(3):410-420. PubMed ID: 27153344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.