These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19400967)

  • 1. Subsampling effects in neuronal avalanche distributions recorded in vivo.
    Priesemann V; Munk MH; Wibral M
    BMC Neurosci; 2009 Apr; 10():40. PubMed ID: 19400967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical analyses support power law distributions found in neuronal avalanches.
    Klaus A; Yu S; Plenz D
    PLoS One; 2011; 6(5):e19779. PubMed ID: 21720544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal avalanches and time-frequency representations in stimulus-evoked activity.
    Arviv O; Goldstein A; Shriki O
    Sci Rep; 2019 Sep; 9(1):13319. PubMed ID: 31527749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsampling scaling.
    Levina A; Priesemann V
    Nat Commun; 2017 May; 8():15140. PubMed ID: 28469176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches.
    Ribeiro TL; Ribeiro S; Belchior H; Caixeta F; Copelli M
    PLoS One; 2014; 9(4):e94992. PubMed ID: 24751599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses.
    Girardi-Schappo M; Kinouchi O; Tragtenberg MH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):024701. PubMed ID: 24032969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal avalanches differ from wakefulness to deep sleep--evidence from intracranial depth recordings in humans.
    Priesemann V; Valderrama M; Wibral M; Le Van Quyen M
    PLoS Comput Biol; 2013; 9(3):e1002985. PubMed ID: 23555220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike avalanches in vivo suggest a driven, slightly subcritical brain state.
    Priesemann V; Wibral M; Valderrama M; Pröpper R; Le Van Quyen M; Geisel T; Triesch J; Nikolić D; Munk MH
    Front Syst Neurosci; 2014; 8():108. PubMed ID: 25009473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal avalanches in neocortical circuits.
    Beggs JM; Plenz D
    J Neurosci; 2003 Dec; 23(35):11167-77. PubMed ID: 14657176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
    Touboul J; Destexhe A
    PLoS One; 2010 Feb; 5(2):e8982. PubMed ID: 20161798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical properties of avalanches in networks.
    Larremore DB; Carpenter MY; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066131. PubMed ID: 23005186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks.
    Poil SS; Hardstone R; Mansvelder HD; Linkenkaer-Hansen K
    J Neurosci; 2012 Jul; 32(29):9817-23. PubMed ID: 22815496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avalanches in a stochastic model of spiking neurons.
    Benayoun M; Cowan JD; van Drongelen W; Wallace E
    PLoS Comput Biol; 2010 Jul; 6(7):e1000846. PubMed ID: 20628615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsampled Directed-Percolation Models Explain Scaling Relations Experimentally Observed in the Brain.
    Carvalho TTA; Fontenele AJ; Girardi-Schappo M; Feliciano T; Aguiar LAA; Silva TPL; de Vasconcelos NAP; Carelli PV; Copelli M
    Front Neural Circuits; 2020; 14():576727. PubMed ID: 33519388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions.
    Yu S; Klaus A; Yang H; Plenz D
    PLoS One; 2014; 9(6):e99761. PubMed ID: 24927158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches.
    Wu S; Zhang Y; Cui Y; Li H; Wang J; Guo L; Xia Y; Yao D; Xu P; Guo D
    Neural Netw; 2019 Feb; 110():91-103. PubMed ID: 30508808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum likelihood estimators for truncated and censored power-law distributions show how neuronal avalanches may be misevaluated.
    Langlois D; Cousineau D; Thivierge JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012709. PubMed ID: 24580259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.
    Palva JM; Zhigalov A; Hirvonen J; Korhonen O; Linkenkaer-Hansen K; Palva S
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3585-90. PubMed ID: 23401536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of power laws in noncritical neuronal systems.
    Faqeeh A; Osat S; Radicchi F; Gleeson JP
    Phys Rev E; 2019 Jul; 100(1-1):010401. PubMed ID: 31499795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.