BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19401309)

  • 1. Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart.
    Poelma C; Van der Heiden K; Hierck BP; Poelmann RE; Westerweel J
    J R Soc Interface; 2010 Jan; 7(42):91-103. PubMed ID: 19401309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart.
    Vennemann P; Kiger KT; Lindken R; Groenendijk BC; Stekelenburg-de Vos S; ten Hagen TL; Ursem NT; Poelmann RE; Westerweel J; Hierck BP
    J Biomech; 2006; 39(7):1191-200. PubMed ID: 15896796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid dynamics and forces in the HH25 avian embryonic outflow tract.
    Ho S; Chan WX; Rajesh S; Phan-Thien N; Yap CH
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1123-1137. PubMed ID: 30810888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow through the embryonic heart outflow tract during cardiac looping in HH13-HH18 chicken embryos.
    Midgett M; Chivukula VK; Dorn C; Wallace S; Rugonyi S
    J R Soc Interface; 2015 Oct; 12(111):20150652. PubMed ID: 26468069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation.
    Rugonyi S; Shaut C; Liu A; Thornburg K; Wang RK
    Phys Med Biol; 2008 Sep; 53(18):5077-91. PubMed ID: 18723935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in dynamic embryonic heart wall motion in response to outflow tract banding measured using video densitometry.
    Stovall S; Midgett M; Thornburg K; Rugonyi S
    J Biomed Opt; 2016 Nov; 21(11):116003. PubMed ID: 27812694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamics of developing avian outflow tract heart valves.
    Bharadwaj KN; Spitz C; Shekhar A; Yalcin HC; Butcher JT
    Ann Biomed Eng; 2012 Oct; 40(10):2212-27. PubMed ID: 22535311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo wall shear measurements within the developing zebrafish heart.
    Jamison RA; Samarage CR; Bryson-Richardson RJ; Fouras A
    PLoS One; 2013; 8(10):e75722. PubMed ID: 24124507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.
    Lee J; Moghadam ME; Kung E; Cao H; Beebe T; Miller Y; Roman BL; Lien CL; Chi NC; Marsden AL; Hsiai TK
    PLoS One; 2013; 8(8):e72924. PubMed ID: 24009714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics.
    Goenezen S; Chivukula VK; Midgett M; Phan L; Rugonyi S
    Biomech Model Mechanobiol; 2016 Jun; 15(3):723-43. PubMed ID: 26361767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of Wall Shear Stress Exerted by Flowing Blood in the Human Carotid Artery: Ultrasound Doppler Velocimetry and Echo Particle Image Velocimetry.
    Gates PE; Gurung A; Mazzaro L; Aizawa K; Elyas S; Strain WD; Shore AC; Shandas R
    Ultrasound Med Biol; 2018 Jul; 44(7):1392-1401. PubMed ID: 29678322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D modelling of fluid mechanics in the zebrafish embryonic heart.
    Foo YY; Pant S; Tay HS; Imangali N; Chen N; Winkler C; Yap CH
    Biomech Model Mechanobiol; 2020 Feb; 19(1):221-232. PubMed ID: 31446522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of systolic and diastolic arterial wall shear stress in the ascending aorta.
    Efstathopoulos EP; Patatoukas G; Pantos I; Benekos O; Katritsis D; Kelekis NL
    Phys Med; 2008 Dec; 24(4):196-203. PubMed ID: 18343178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro comparison of the effect of stent configuration on wall shear stress using time-resolved particle image velocimetry.
    Charonko J; Karri S; Schmieg J; Prabhu S; Vlachos P
    Ann Biomed Eng; 2010 Mar; 38(3):889-902. PubMed ID: 20099035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac outflow and wall motion in hypothermic chick embryos.
    Lee SJ; Yeom E; Ha H; Nam KH
    Microvasc Res; 2011 Nov; 82(3):296-303. PubMed ID: 21971263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling.
    Liu A; Yin X; Shi L; Li P; Thornburg KL; Wang R; Rugonyi S
    PLoS One; 2012; 7(7):e40869. PubMed ID: 22844414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.