These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19401680)

  • 21. Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics.
    McCutcheon JP; Eddy SR
    Nucleic Acids Res; 2003 Jul; 31(14):4119-28. PubMed ID: 12853629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovering cis-regulatory RNAs in Shewanella genomes by Support Vector Machines.
    Xu X; Ji Y; Stormo GD
    PLoS Comput Biol; 2009 Apr; 5(4):e1000338. PubMed ID: 19343219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S. cerevisiae Vts1p induces deadenylation-dependent transcript degradation and interacts with the Ccr4p-Pop2p-Not deadenylase complex.
    Rendl LM; Bieman MA; Smibert CA
    RNA; 2008 Jul; 14(7):1328-36. PubMed ID: 18469165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a conserved RNA motif essential for She2p recognition and mRNA localization to the yeast bud.
    Olivier C; Poirier G; Gendron P; Boisgontier A; Major F; Chartrand P
    Mol Cell Biol; 2005 Jun; 25(11):4752-66. PubMed ID: 15899876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster.
    Gerber AP; Luschnig S; Krasnow MA; Brown PO; Herschlag D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4487-92. PubMed ID: 16537387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequencing and comparison of yeast species to identify genes and regulatory elements.
    Kellis M; Patterson N; Endrizzi M; Birren B; Lander ES
    Nature; 2003 May; 423(6937):241-54. PubMed ID: 12748633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p.
    Aviv T; Lin Z; Ben-Ari G; Smibert CA; Sicheri F
    Nat Struct Mol Biol; 2006 Feb; 13(2):168-76. PubMed ID: 16429151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.
    Vilela C; Ramirez CV; Linz B; Rodrigues-Pousada C; McCarthy JE
    EMBO J; 1999 Jun; 18(11):3139-52. PubMed ID: 10357825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translational regulation in vivo of the Drosophila melanogaster mRNA encoding succinate dehydrogenase iron protein via iron responsive elements.
    Melefors O
    Biochem Biophys Res Commun; 1996 Apr; 221(2):437-41. PubMed ID: 8619873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency.
    Ramos-Alonso L; Romero AM; Soler MÀ; Perea-García A; Alepuz P; Puig S; Martínez-Pastor MT
    PLoS Genet; 2018 Jun; 14(6):e1007476. PubMed ID: 29912874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of functional, endogenous programmed -1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae.
    Jacobs JL; Belew AT; Rakauskaite R; Dinman JD
    Nucleic Acids Res; 2007; 35(1):165-74. PubMed ID: 17158156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element.
    Plant EP; Wang P; Jacobs JL; Dinman JD
    Nucleic Acids Res; 2004; 32(2):784-90. PubMed ID: 14762205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic discovery of structural elements governing stability of mammalian messenger RNAs.
    Goodarzi H; Najafabadi HS; Oikonomou P; Greco TM; Fish L; Salavati R; Cristea IM; Tavazoie S
    Nature; 2012 Apr; 485(7397):264-8. PubMed ID: 22495308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].
    Rumyantsev AM; Zakharov GA; Zhuravlev AV; Padkina MV; Savvateeva-Popova EV; Sambuk EV
    Genetika; 2014 Jun; 50(6):652-9. PubMed ID: 25715455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Upf-dependent decay of wild-type PPR1 mRNA depends on its 5'-UTR and first 92 ORF nucleotides.
    Kebaara B; Nazarenus T; Taylor R; Forch A; Atkin AL
    Nucleic Acids Res; 2003 Jun; 31(12):3157-65. PubMed ID: 12799443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilizing the GCN4 leader region to investigate the role of the sequence determinants in nonsense-mediated mRNA decay.
    Ruiz-Echevarria MJ; Peltz SW
    EMBO J; 1996 Jun; 15(11):2810-9. PubMed ID: 8654378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autoregulation at the level of mRNA 3' end formation of the suppressor of forked gene of Drosophila melanogaster is conserved in Drosophila virilis.
    Audibert A; Simonelig M
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14302-7. PubMed ID: 9826695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
    Li JJ; Chew GL; Biggin MD
    Genome Biol; 2019 Aug; 20(1):162. PubMed ID: 31399036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multicopy suppressor of nin1-1 of the yeast Saccharomyces cerevisiae is a counterpart of the Drosophila melanogaster diphenol oxidase A2 gene, Dox-A2.
    Kawamura M; Kominami K; Takeuchi J; Toh-e A
    Mol Gen Genet; 1996 May; 251(2):146-52. PubMed ID: 8668124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.