These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19402599)

  • 1. Analysis of the tracheal contents using headspace gas chromatography-mass spectrometry to screen for accelerant use.
    Adachi N; Kinoshita H; Nishiguchi M; Takahashi M; Ouchi H; Minami T; Matsui K; Yamamura T; Motomura H; Ohtsu N; Yoshida S; Ameno K; Hishida S
    Soud Lek; 2009 Jan; 54(1):2-3. PubMed ID: 19402599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intratracheal gas analysis for volatile substances by gas chromatography/mass spectrometry--application to forensic autopsies.
    Takayasu T; Ohshima T; Kondo T; Sato Y
    J Forensic Sci; 2001 Jan; 46(1):98-104. PubMed ID: 11210932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire.
    Nowlan M; Stuart AW; Basara GJ; Sandercock PM
    J Forensic Sci; 2007 May; 52(3):643-8. PubMed ID: 17397503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples.
    McGee E; Lang TL
    J Forensic Sci; 2002 Mar; 47(2):267-74. PubMed ID: 11908594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between blood volatile hydrocarbon concentrations in different types of fire-related deaths.
    Sasao A; Yonemitsu K; Ohtsu Y; Tsutsumi H; Furukawa S; Nishitani Y
    Forensic Sci Int; 2023 Dec; 353():111872. PubMed ID: 38775734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative evaluation of volatile hydrocarbons in post-mortem blood in forensic autopsy cases of fire-related deaths.
    Yonemitsu K; Sasao A; Oshima T; Mimasaka S; Ohtsu Y; Nishitani Y
    Forensic Sci Int; 2012 Apr; 217(1-3):71-5. PubMed ID: 22019392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of arson accelerants by gas chromatographic patterns produced by a digital log electrometer.
    Chisum WJ; Elzerman TR
    J Forensic Sci; 1972 Apr; 17(2):280-91. PubMed ID: 4679802
    [No Abstract]   [Full Text] [Related]  

  • 8. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The study of accelerant residues in fire remains.
    Ettling BV; Adams MF
    J Forensic Sci; 1968 Jan; 13(1):76-89. PubMed ID: 5644890
    [No Abstract]   [Full Text] [Related]  

  • 10. [Case of death by fire with kerosene--analysis of contents of trachea and stomach].
    Yoshida M; Watabiki T; Tokiyasu T; Akane A; Ishida N
    Nihon Hoigaku Zasshi; 1994 Apr; 48(2):96-104. PubMed ID: 8196215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretation of accelerants in blood of cadavers found in the wreckage after fire.
    Iwasaki Y; Yashiki M; Kojima T; Miyazaki T
    Am J Forensic Med Pathol; 1998 Mar; 19(1):80-6. PubMed ID: 9539399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptic chemical identification as a crime intelligence aid.
    Sturaro A; Rella R; Parvoli G; Doretti L
    Sci Justice; 1999; 39(1):39-43. PubMed ID: 10750271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of compressed air foam on the detection of hydrocarbon fuels in fire debris samples.
    Coulson SA; Morgan-Smith RK; Noble D
    Sci Justice; 2000; 40(4):257-60. PubMed ID: 11094822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of accelerant in fire debris by pyrolysis gas chromatography-mass spectrometry].
    Zhang J; Liu J
    Se Pu; 2019 Apr; 37(4):426-431. PubMed ID: 30977346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of carbon monoxide poisoning that occurred before a house fire in three cases.
    Oshima T; Yonemitsu K; Sasao A; Ohtani M; Mimasaka S
    Leg Med (Tokyo); 2015 Sep; 17(5):371-5. PubMed ID: 26004303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of human tissue samples for volatile fire accelerants].
    Treibs R
    Arch Kriminol; 2014; 233(3-4):95-113. PubMed ID: 24855737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress on interference in the identification of accelerants in a fire scene].
    Yin G; Qian P; Liqiu F; Jin J; Liu L; Zhang J
    Se Pu; 2022 May; 40(5):401-408. PubMed ID: 35477999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Determination of bromochlorodifluoromethane (Halon 1211) in biological material by gas chromatography with mass detector].
    Pufal E; Sykutera M; Sliwka K
    Arch Med Sadowej Kryminol; 2004; 54(1):29-36. PubMed ID: 15129483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of helium in a fire victim: A case report.
    Soejima M; Tanaka N; Oshima T; Kinoshita H; Koda Y
    Forensic Sci Int; 2021 Jan; 318():110613. PubMed ID: 33254094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical hazards of a fire-fighting training environment.
    Hill TA; Siedle AR; Perry R
    Am Ind Hyg Assoc J; 1972 Jun; 33(6):423-30. PubMed ID: 4651528
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.