BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19402629)

  • 1. Antimalarial peroxide dyads from natural artemisinin and hydroxyalkylated 1,2,4-trioxanes.
    Griesbeck AG; Neudörfl J; Hörauf A; Specht S; Raabe A
    J Med Chem; 2009 May; 52(10):3420-3. PubMed ID: 19402629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme alkylation by artesunic acid and trioxaquine DU1301, two antimalarial trioxanes.
    Laurent SA; Loup C; Mourgues S; Robert A; Meunier B
    Chembiochem; 2005 Apr; 6(4):653-8. PubMed ID: 15744769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an antimalarial synthetic trioxolane drug development candidate.
    Vennerstrom JL; Arbe-Barnes S; Brun R; Charman SA; Chiu FC; Chollet J; Dong Y; Dorn A; Hunziker D; Matile H; McIntosh K; Padmanilayam M; Santo Tomas J; Scheurer C; Scorneaux B; Tang Y; Urwyler H; Wittlin S; Charman WN
    Nature; 2004 Aug; 430(7002):900-4. PubMed ID: 15318224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New developments in synthetic peroxidic drugs as artemisinin mimics.
    Jefford CW
    Drug Discov Today; 2007 Jun; 12(11-12):487-95. PubMed ID: 17532534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160).
    Kaiser M; Wittlin S; Nehrbass-Stuedli A; Dong Y; Wang X; Hemphill A; Matile H; Brun R; Vennerstrom JL
    Antimicrob Agents Chemother; 2007 Aug; 51(8):2991-3. PubMed ID: 17562801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Approaches to Mono- and Bicyclic Perortho-Esters with a Central 1,2,4-Trioxane Ring as the Privileged Lead Structure in Antimalarial and Antitumor-Active Peroxides and Clarification of the Peroxide Relevance.
    Griesbeck AG; Bräutigam M; Kleczka M; Raabe A
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28085079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity.
    Posner GH; Oh CH; Wang D; Gerena L; Milhous WK; Meshnick SR; Asawamahasadka W
    J Med Chem; 1994 Apr; 37(9):1256-8. PubMed ID: 8176702
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthetic peroxides as antimalarials.
    Tang Y; Dong Y; Vennerstrom JL
    Med Res Rev; 2004 Jul; 24(4):425-48. PubMed ID: 15170591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knowledge of the proposed chemical mechanism of action and cytochrome p450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides.
    Posner GH; O'Neill PM
    Acc Chem Res; 2004 Jun; 37(6):397-404. PubMed ID: 15196049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and antimalarial activity of 2-methoxyprop-2-yl peroxides derivatives.
    Cointeaux L; Berrien JF; Peyrou V; Provot O; Ciceron L; Danis M; Robert A; Meunier B; Mayrargue J
    Bioorg Med Chem Lett; 2003 Jan; 13(1):75-7. PubMed ID: 12467620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxylation of 10-deoxoartemisinin by Cunninghamella elegans.
    Parshikov IA; Muraleedharan KM; Miriyala B; Avery MA; Williamson JS
    J Nat Prod; 2004 Sep; 67(9):1595-7. PubMed ID: 15387669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Strategies for Peroxide Ring Construction in Artemisinin.
    Vil' VA; Yaremenko IA; Ilovaisky AI; Terent'ev AO
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28085073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of artemisinin and its structurally simplified trioxane derivatives as antimalarial drugs.
    Ploypradith P
    Acta Trop; 2004 Feb; 89(3):329-42. PubMed ID: 14744559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispiro-1,2,4-trioxane analogues of a prototype dispiro-1,2,4-trioxolane: mechanistic comparators for artemisinin in the context of reaction pathways with iron(II).
    Tang Y; Dong Y; Wang X; Sriraghavan K; Wood JK; Vennerstrom JL
    J Org Chem; 2005 Jun; 70(13):5103-10. PubMed ID: 15960511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic peroxides as potent antimalarials. News and views.
    Jefford CW
    Curr Top Med Chem; 2012; 12(5):373-99. PubMed ID: 22242847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of N-sulfonyl- and N-carbonyl-11-azaartemisinins with greatly enhanced thermal stabilities: in vitro antimalarial activities.
    Haynes RK; Wong HN; Lee KW; Lung CM; Shek LY; Williams ID; Croft SL; Vivas L; Rattray L; Stewart L; Wong VK; Ko BC
    ChemMedChem; 2007 Oct; 2(10):1464-79. PubMed ID: 17768731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A QSAR study of the antimalarial activity of some synthetic 1,2,4-trioxanes.
    Grigorov M; Weber J; Tronchet JM; Jefford CW; Milhous WK; Maric D
    J Chem Inf Comput Sci; 1997; 37(1):124-30. PubMed ID: 9025258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiro- and dispiro-1,2-dioxolanes: contribution of iron(II)-mediated one-electron vs two-electron reduction to the activity of antimalarial peroxides.
    Wang X; Dong Y; Wittlin S; Creek D; Chollet J; Charman SA; Tomas JS; Scheurer C; Snyder C; Vennerstrom JL
    J Med Chem; 2007 Nov; 50(23):5840-7. PubMed ID: 17949067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potent antimalarial 1,2,4-trioxanes through perhydrolysis of epoxides.
    Hao HD; Wittlin S; Wu Y
    Chemistry; 2013 Jun; 19(23):7605-19. PubMed ID: 23576327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malaria-infected mice are cured by oral administration of new artemisinin derivatives.
    Posner GH; Chang W; Hess L; Woodard L; Sinishtaj S; Usera AR; Maio W; Rosenthal AS; Kalinda AS; D'Angelo JG; Petersen KS; Stohler R; Chollet J; Santo-Tomas J; Snyder C; Rottmann M; Wittlin S; Brun R; Shapiro TA
    J Med Chem; 2008 Feb; 51(4):1035-42. PubMed ID: 18232653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.