BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

828 related articles for article (PubMed ID: 19402684)

  • 1. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.
    Maali A; Wang Y; Bhushan B
    Langmuir; 2009 Oct; 25(20):12002-5. PubMed ID: 19821617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods, and a spinning disk technique.
    Bowen WR; Fenton AS; Lovitt RW; Wright CJ
    Biotechnol Bioeng; 2002 Jul; 79(2):170-9. PubMed ID: 12115433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slip length measurement of confined air flow on three smooth surfaces.
    Pan Y; Bhushan B; Maali A
    Langmuir; 2013 Apr; 29(13):4298-302. PubMed ID: 23464759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of no-slip and slip boundary conditions in confined Newtonian fluids using atomic force microscopy.
    Henry CL; Craig VS
    Phys Chem Chem Phys; 2009 Nov; 11(41):9514-21. PubMed ID: 19830336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity.
    Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR
    Langmuir; 2008 May; 24(9):4944-51. PubMed ID: 18355095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.
    Sendner C; Horinek D; Bocquet L; Netz RR
    Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractive index of thin, aqueous films between hydrophobic surfaces studied using evanescent wave atomic force microscopy.
    McKee CT; Ducker WA
    Langmuir; 2005 Dec; 21(26):12153-9. PubMed ID: 16342987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy dissipation and dynamic response of an amplitude-modulation atomic-force microscopy subjected to a tip-sample viscous force.
    Lin SM
    Ultramicroscopy; 2007; 107(2-3):245-53. PubMed ID: 16982149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of the fusogenic peptide B18 onto solid surfaces: insights into the mechanism of peptide assembly.
    Rocha S; Pereira MC; Coelho MA; Möhwald H; Brezesinski G
    Langmuir; 2007 Apr; 23(9):5022-8. PubMed ID: 17391050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a disturbed sessile drop measured by atomic force microscopy (AFM).
    McGuiggan PM; Grave DA; Wallace JS; Cheng S; Prosperetti A; Robbins MO
    Langmuir; 2011 Oct; 27(19):11966-72. PubMed ID: 21848310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.
    Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW
    Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved nanobubble immobility induced by surface structures on hydrophobic surfaces.
    Wang Y; Bhushan B; Zhao X
    Langmuir; 2009 Aug; 25(16):9328-36. PubMed ID: 19572534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple atomic force microscopy calibration method for direct measurement of surface energy on nanostructured surfaces covered with molecularly thin liquid films.
    Brunner R; Etsion I; Talke FE
    Rev Sci Instrum; 2009 May; 80(5):055109. PubMed ID: 19485536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ atomic force microscopy of modified dextrin adsorption on hydrophobic and hydrophilic layered silicate minerals.
    Mierczynska-Vasilev A; Beattie DA
    J Colloid Interface Sci; 2010 Apr; 344(2):429-37. PubMed ID: 20138294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact line and contact angle dynamics in superhydrophobic channels.
    Zhang J; Kwok DY
    Langmuir; 2006 May; 22(11):4998-5004. PubMed ID: 16700586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AFM study of the behavior of polystyrene and glass particles during the electrodeposition of copper.
    Dedeloudis C; Fransaer J
    Langmuir; 2004 Dec; 20(25):11030-8. PubMed ID: 15568855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of bacterial adhesion using a gradient force analysis method and colloid probe atomic force microscopy.
    Li X; Logan BE
    Langmuir; 2004 Sep; 20(20):8817-22. PubMed ID: 15379512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of solution concentration, surface bias and protonation on the dynamic response of amplitude-modulated atomic force microscopy in water.
    Wu Y; Gupta C; Shannon MA
    Langmuir; 2008 Oct; 24(19):10817-24. PubMed ID: 18763814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.