These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19402702)

  • 21. Fischer-Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth.
    Mendes FM; Perez CA; Noronha FB; Souza CD; Cesar DV; Freund HJ; Schmal M
    J Phys Chem B; 2006 May; 110(18):9155-63. PubMed ID: 16671728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cobalt on carbon nanofiber catalysts: auspicious system for study of manganese promotion in Fischer-Tropsch catalysis.
    Bezemer GL; Falke U; van Dillen AJ; de Jong KP
    Chem Commun (Camb); 2005 Feb; (6):731-3. PubMed ID: 15685319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ surface oxidation study of a planar Co/SiO2/Si(100) model catalyst with nanosized cobalt crystallites under model Fischer-Tropsch synthesis conditions.
    Saib AM; Borgna A; van de Loosdrecht J; van Berge PJ; Niemantsverdriet JW
    J Phys Chem B; 2006 May; 110(17):8657-64. PubMed ID: 16640420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fundamentals of melt infiltration for the preparation of supported metal catalysts. The case of Co/SiO2 for Fischer-Tropsch synthesis.
    Eggenhuisen TM; den Breejen JP; Verdoes D; de Jongh PE; de Jong KP
    J Am Chem Soc; 2010 Dec; 132(51):18318-25. PubMed ID: 21126080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts.
    Loveless BT; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2013 Apr; 135(16):6107-21. PubMed ID: 23480097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size-dependent dissociation of carbon monoxide on cobalt nanoparticles.
    Tuxen A; Carenco S; Chintapalli M; Chuang CH; Escudero C; Pach E; Jiang P; Borondics F; Beberwyck B; Alivisatos AP; Thornton G; Pong WF; Guo J; Perez R; Besenbacher F; Salmeron M
    J Am Chem Soc; 2013 Feb; 135(6):2273-8. PubMed ID: 23339635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlating particle size and shape of supported Ru/gamma-Al2O3 catalysts with NH3 decomposition activity.
    Karim AM; Prasad V; Mpourmpakis G; Lonergan WW; Frenkel AI; Chen JG; Vlachos DG
    J Am Chem Soc; 2009 Sep; 131(34):12230-9. PubMed ID: 19663478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of electrophilic species in the Fischer-Tropsch reaction.
    Maitlis PM; Zanotti V
    Chem Commun (Camb); 2009 Apr; (13):1619-34. PubMed ID: 19294244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Reoxidation Thresholds for γ-Al
    Tsakoumis NE; Walmsley JC; Rønning M; van Beek W; Rytter E; Holmen A
    J Am Chem Soc; 2017 Mar; 139(10):3706-3715. PubMed ID: 28191967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence of Structure Sensitivity in the Fischer-Tropsch Reaction on Model Cobalt Nanoparticles by Time-Resolved Chemical Transient Kinetics.
    Ralston WT; Melaet G; Saephan T; Somorjai GA
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7415-7419. PubMed ID: 28543941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature-dependence of hydrogen oxidation reaction rates and CO-tolerance at carbon-supported Pt, Pt-Co, and Pt-Ru catalysts.
    Uchida H; Izumi K; Aoki K; Watanabe M
    Phys Chem Chem Phys; 2009 Mar; 11(11):1771-9. PubMed ID: 19290349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation.
    Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA
    J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Weak Surface Modification on Co/SiO2 Catalyst for Fischer-Tropsch Reaction.
    Ning W; Shen H; Jin Y; Yang X
    PLoS One; 2015; 10(5):e0124228. PubMed ID: 25938725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ reduction study of cobalt model Fischer-Tropsch synthesis catalysts.
    du Plessis HE; Forbes RP; Barnard W; Erasmus WJ; Steuwer A
    Phys Chem Chem Phys; 2013 Jul; 15(28):11640-5. PubMed ID: 23752408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron energy loss spectroscopy (EELS) of iron Fischer-Tropsch catalysts.
    Jin Y; Xu H; Datye AK
    Microsc Microanal; 2006 Apr; 12(2):124-34. PubMed ID: 17481348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical functionalization of silica and alumina particles for dispersion in carbon dioxide.
    Visintin PM; Carbonell RG; Schauer CK; Desimone JM
    Langmuir; 2005 May; 21(11):4816-23. PubMed ID: 15896018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Carbon Deposits on the Cobalt-Catalyzed Fischer-Tropsch Reaction: Evidence of a Two-Site Reaction Model.
    Chen W; Kimpel TF; Song Y; Chiang FK; Zijlstra B; Pestman R; Wang P; Hensen EJM
    ACS Catal; 2018 Feb; 8(2):1580-1590. PubMed ID: 29910971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The optimally performing Fischer-Tropsch catalyst.
    Filot IA; van Santen RA; Hensen EJ
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12746-50. PubMed ID: 25168456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.
    Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J
    Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer-Tropsch synthesis.
    Jean-Marie A; Griboval-Constant A; Khodakov AY; Monflier E; Diehl F
    Chem Commun (Camb); 2011 Oct; 47(38):10767-9. PubMed ID: 21874176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.