BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 19403138)

  • 21. [Finite element analysis (FEA) for the structure capacity of proximal femur during falling--(I) FEA model and the failure criteria for the bone].
    Fan L; Wang E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1028-32. PubMed ID: 17121347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in the fabric and compliance tensors of cancellous bone due to trabecular surface remodeling, predicted by a digital image-based model.
    Tsubota K; Adachi T
    Comput Methods Biomech Biomed Engin; 2004 Aug; 7(4):187-92. PubMed ID: 15512762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of micro-level and continuum-level voxel models of the proximal femur.
    Verhulp E; van Rietbergen B; Huiskes R
    J Biomech; 2006; 39(16):2951-7. PubMed ID: 16359680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of glenoid prosthesis design on glenoid bone remodeling: adaptive finite element based simulation.
    Sharma GB; Debski RE; McMahon PJ; Robertson DD
    J Biomech; 2010 Jun; 43(9):1653-9. PubMed ID: 20394931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numeric simulation of time-dependent remodeling of bone around loaded oral implants.
    Eser A; Tonuk E; Akca K; Cehreli MC
    Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of muscular weakness to osteoporosis: computational and animal models.
    Be'ery-Lipperman M; Gefen A
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):984-97. PubMed ID: 16039022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational model for cortical endosteal surface remodeling induced by mechanical disuse.
    Gong H; Zhang M
    Mol Cell Biomech; 2010 Mar; 7(1):1-11. PubMed ID: 20806719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation.
    Kameo Y; Adachi T
    Biomech Model Mechanobiol; 2014 Aug; 13(4):851-60. PubMed ID: 24174063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capturing microscopic features of bone remodeling into a macroscopic model based on biological rationales of bone adaptation.
    Kim YK; Kameo Y; Tanaka S; Adachi T
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1697-1708. PubMed ID: 28523374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical significance of femoral head trabecular bone structure in Loris and Galago evaluated using micromechanical finite element models.
    Ryan TM; van Rietbergen B
    Am J Phys Anthropol; 2005 Jan; 126(1):82-96. PubMed ID: 15386240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation.
    Pontzer H; Lieberman DE; Momin E; Devlin MJ; Polk JD; Hallgrímsson B; Cooper DM
    J Exp Biol; 2006 Jan; 209(Pt 1):57-65. PubMed ID: 16354778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models.
    Adachi T; Tsubota K; Tomita Y; Hollister SJ
    J Biomech Eng; 2001 Oct; 123(5):403-9. PubMed ID: 11601724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational simulation of trabecular adaptation progress in human proximal femur during growth.
    Jang IG; Kim IY
    J Biomech; 2009 Mar; 42(5):573-80. PubMed ID: 19217625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New approaches to cancellous bone bio-modeling.
    Avramescu ET; Călina ML; Rusu L; Neamţu MC; Enescu-Bieru D
    Rom J Morphol Embryol; 2009; 50(2):229-37. PubMed ID: 19434316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuum remodeling revisited : deformation rate driven functional adaptation using a hypoelastic constitutive law.
    Negus CH; Impelluso TJ
    Biomech Model Mechanobiol; 2007 Jul; 6(4):211-26. PubMed ID: 16897103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An anisotropic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies.
    Garcia JM; Martínez MA; Doblaré M
    Comput Methods Biomech Biomed Engin; 2001; 4(4):355-77. PubMed ID: 11328645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of the viscoelastic effect in a bone remodeling model.
    Baïotto S; Zidi M
    Biomech Model Mechanobiol; 2009 Apr; 8(2):129-39. PubMed ID: 18357479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.