These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19403143)

  • 1. Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: experimental and DFT studies.
    Diaz-Flores PE; López-Urías F; Terrones M; Rangel-Mendez JR
    J Colloid Interface Sci; 2009 Jun; 334(2):124-31. PubMed ID: 19403143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite.
    Alkaram UF; Mukhlis AA; Al-Dujaili AH
    J Hazard Mater; 2009 Sep; 169(1-3):324-32. PubMed ID: 19464105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous adsorption of phenol and cadmium on amphoteric modified soil.
    Meng ZF; Zhang YP; Zhang ZQ
    J Hazard Mater; 2008 Nov; 159(2-3):492-8. PubMed ID: 18387736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of activated carbons modification on porosity, surface structure and phenol adsorption.
    Stavropoulos GG; Samaras P; Sakellaropoulos GP
    J Hazard Mater; 2008 Mar; 151(2-3):414-21. PubMed ID: 17644248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and removal of Cd(II) using Cd(II)-ion imprinted polymer.
    Singh DK; Mishra S
    J Hazard Mater; 2009 May; 164(2-3):1547-51. PubMed ID: 19027231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and practical aspects of chemical functionalization of carbon nanofibers (CNFs): DFT calculations and adsorption study.
    Rokhina EV; Lahtinen M; Makarova K; Jegatheesan V; Virkutyte J
    Bioresour Technol; 2012 Jun; 113():127-31. PubMed ID: 22209137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and detailed characterization of bean husk-based carbon: efficient cadmium (II) removal from aqueous solutions.
    Chávez-Guerrero L; Rangel-Méndez R; Muñoz-Sandoval E; Cullen DA; Smith DJ; Terrones H; Terrones M
    Water Res; 2008 Jul; 42(13):3473-9. PubMed ID: 18514757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching.
    Ji L; Shao Y; Xu Z; Zheng S; Zhu D
    Environ Sci Technol; 2010 Aug; 44(16):6429-36. PubMed ID: 20704245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties.
    Bahdod A; El Asri S; Saoiabi A; Coradin T; Laghzizil A
    Water Res; 2009 Feb; 43(2):313-8. PubMed ID: 18986672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Simultaneous Removal of Cd (II) and Phenol by Titanium Dioxide-Titanate Nanotubes Composite Nanomaterial Synthesized Through Alkaline-Acid Hydrothermal Method].
    Lei L; Jin YJ; Wang T; Zhao X; Yan Y; Liu W
    Huan Jing Ke Xue; 2015 Jul; 36(7):2573-80. PubMed ID: 26489327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.
    Deng S; Jian G; Lei J; Hu Z; Ju H
    Biosens Bioelectron; 2009 Oct; 25(2):373-7. PubMed ID: 19683424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions.
    Aziz A; Elandaloussi el H; Belhalfaoui B; Ouali MS; De Ménorval LC
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):192-8. PubMed ID: 19553093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review.
    Lin SH; Juang RS
    J Environ Manage; 2009 Mar; 90(3):1336-49. PubMed ID: 18995949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The adsorption kinetics of cadmium by three different types of carbon nanotubes.
    Perez-Aguilar NV; Diaz-Flores PE; Rangel-Mendez JR
    J Colloid Interface Sci; 2011 Dec; 364(2):279-87. PubMed ID: 21924733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water.
    Chakraborty A; Deva D; Sharma A; Verma N
    J Colloid Interface Sci; 2011 Jul; 359(1):228-39. PubMed ID: 21507421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes.
    Gao Z; Bandosz TJ; Zhao Z; Han M; Qiu J
    J Hazard Mater; 2009 Aug; 167(1-3):357-65. PubMed ID: 19264402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of a crosslinked chitosan derivative with a complexing agent and its adsorption studies toward metal(II) ions.
    Krishnapriya KR; Kandaswamy M
    Carbohydr Res; 2009 Sep; 344(13):1632-8. PubMed ID: 19545861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal and pre-concentration of phenolic species onto beta-cyclodextrin modified poly(hydroxyethylmethacrylate-ethyleneglycoldimethacrylate) microbeads.
    Abay I; Denizli A; Bişkin E; Salih B
    Chemosphere; 2005 Dec; 61(9):1263-72. PubMed ID: 15904947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite.
    Wu P; Wu W; Li S; Xing N; Zhu N; Li P; Wu J; Yang C; Dang Z
    J Hazard Mater; 2009 Sep; 169(1-3):824-30. PubMed ID: 19443105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of phenol and dopamine with commercial MWCNTs.
    Tóth A; Törocsik A; Tombácz E; Oláh E; Heggen M; Li C; Klumpp E; Geissler E; László K
    J Colloid Interface Sci; 2011 Dec; 364(2):469-75. PubMed ID: 21930280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.