These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 19403359)
1. Micromachined hot-wire thermal conductivity probe for biomedical applications. Yi M; Panchawagh HV; Podhajsky RJ; Mahajan RL IEEE Trans Biomed Eng; 2009 Oct; 56(10):2477-84. PubMed ID: 19403359 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating. Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353 [TBL] [Abstract][Full Text] [Related]
3. Measurement of directional thermal properties of biomaterials. Bhavaraju NC; Cao H; Yuan DY; Valvano JW; Webster JG IEEE Trans Biomed Eng; 2001 Feb; 48(2):261-7. PubMed ID: 11296882 [TBL] [Abstract][Full Text] [Related]
4. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions. Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370 [TBL] [Abstract][Full Text] [Related]
5. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity. Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848 [TBL] [Abstract][Full Text] [Related]
6. [Effects of probe configuration on the measurement of bio-tissue thermal physical parameters using step-temperature technique]. Yang K; Liu W; Luo Q Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1001-7. PubMed ID: 18027684 [TBL] [Abstract][Full Text] [Related]
7. Design and fabrication development of a micro flow heated channel with measurements of the inside micro-scale flow and heat transfer process. Liu CW; Gau C; Dai BT Biosens Bioelectron; 2004 Jul; 20(1):91-101. PubMed ID: 15142581 [TBL] [Abstract][Full Text] [Related]
8. Measurement of thermal conductivity, thermal diffusivity, and perfusion. Yuan DY; Valvano JW; Anderson GT Biomed Sci Instrum; 1993; 29():435-42. PubMed ID: 8329624 [TBL] [Abstract][Full Text] [Related]
9. Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements. Shen CH; Gau C Biosens Bioelectron; 2004 Jul; 20(1):103-14. PubMed ID: 15142582 [TBL] [Abstract][Full Text] [Related]
10. Thermal diffusion probe and instrument system for tissue blood flow measurements: validation in phantoms and in vivo organs. Delhomme G; Newman WH; Roussel B; Jouvet M; Bowman HF; Dittmar A IEEE Trans Biomed Eng; 1994 Jul; 41(7):656-62. PubMed ID: 7927386 [TBL] [Abstract][Full Text] [Related]
11. In vivo measurement of swine endocardial convective heat transfer coefficient. Tangwongsan C; Will JA; Webster JG; Meredith KL; Mahvi DM IEEE Trans Biomed Eng; 2004 Aug; 51(8):1478-86. PubMed ID: 15311835 [TBL] [Abstract][Full Text] [Related]
12. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope. Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450 [TBL] [Abstract][Full Text] [Related]
13. 3omega method to measure thermal properties of electrically conducting small-volume liquid. Choi SR; Kim J; Kim D Rev Sci Instrum; 2007 Aug; 78(8):084902. PubMed ID: 17764347 [TBL] [Abstract][Full Text] [Related]
14. A thermal signal generator probe for the study of neural thermal transduction. Maluf NI; McNutt EL; Monroe S; Tanelian DL; Kovacs GT IEEE Trans Biomed Eng; 1994 Jul; 41(7):649-55. PubMed ID: 7927385 [TBL] [Abstract][Full Text] [Related]
15. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. Ahmed M; Liu Z; Humphries S; Goldberg SN Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580 [TBL] [Abstract][Full Text] [Related]
16. Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: a computational modeling study. Schutt D; Berjano EJ; Haemmerich D Int J Hyperthermia; 2009 Mar; 25(2):99-107. PubMed ID: 19337910 [TBL] [Abstract][Full Text] [Related]
17. Temperature distribution effects on micro-CFPCR performance. Chen PC; Nikitopoulos DE; Soper SA; Murphy MC Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180 [TBL] [Abstract][Full Text] [Related]
18. Device for characterization of thermal effusivity of liquids using photothermal beam deflection. Sandoval-Romero GE; García-Valenzuela A; Sánchez-Pérez C; Hernández-Cordero J; Muratikov KL Rev Sci Instrum; 2007 Oct; 78(10):104901. PubMed ID: 17979448 [TBL] [Abstract][Full Text] [Related]
19. Temperature dependence of thermal conductivity of biological tissues. Bhattacharya A; Mahajan RL Physiol Meas; 2003 Aug; 24(3):769-83. PubMed ID: 14509313 [TBL] [Abstract][Full Text] [Related]
20. Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material. Davidson SR; Sherar MD Int J Hyperthermia; 2003; 19(5):551-62. PubMed ID: 12944169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]