BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19403645)

  • 1. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.
    Chen J; Layton AT; Edwards A
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F517-36. PubMed ID: 19403646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1369-83. PubMed ID: 20335320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1367-81. PubMed ID: 15914775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2010 Sep; 299(3):F616-33. PubMed ID: 20534869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2012 Oct; 303(7):F907-17. PubMed ID: 22791340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1346-66. PubMed ID: 15914776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2010 Sep; 299(3):F634-47. PubMed ID: 20519375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of nitric oxide tubulovascular cross talk in a renal outer medullary cross section.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2007 Feb; 292(2):F711-22. PubMed ID: 17032934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F979-96. PubMed ID: 21849492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2016 Feb; 310(3):F237-47. PubMed ID: 26831340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen transport across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1042-55. PubMed ID: 12181134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
    Yuan J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F265-72. PubMed ID: 20392798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney.
    Layton AT
    Bull Math Biol; 2007 Apr; 69(3):887-929. PubMed ID: 17265123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk.
    Mori T; O'Connor PM; Abe M; Cowley AW
    Hypertension; 2007 Jun; 49(6):1336-41. PubMed ID: 17470722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F372-84. PubMed ID: 21068088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F356-71. PubMed ID: 21068086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of renal medullary three-dimensional architecture on oxygen transport.
    Fry BC; Edwards A; Sgouralis I; Layton AT
    Am J Physiol Renal Physiol; 2014 Aug; 307(3):F263-72. PubMed ID: 24899054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen transport in a cross section of the rat inner medulla: impact of heterogeneous distribution of nephrons and vessels.
    Fry BC; Layton AT
    Math Biosci; 2014 Dec; 258():68-76. PubMed ID: 25260928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.