BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 19403660)

  • 1. FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism.
    Thomas AJ; Erickson CA
    Development; 2009 Jun; 136(11):1849-58. PubMed ID: 19403660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3.
    Nitzan E; Pfaltzgraff ER; Labosky PA; Kalcheim C
    Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12709-14. PubMed ID: 23858437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos.
    Kos R; Reedy MV; Johnson RL; Erickson CA
    Development; 2001 Apr; 128(8):1467-79. PubMed ID: 11262245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells.
    Nitzan E; Krispin S; Pfaltzgraff ER; Klar A; Labosky PA; Kalcheim C
    Development; 2013 Jun; 140(11):2269-79. PubMed ID: 23615280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. colgate/hdac1 Repression of foxd3 expression is required to permit mitfa-dependent melanogenesis.
    Ignatius MS; Moose HE; El-Hodiri HM; Henion PD
    Dev Biol; 2008 Jan; 313(2):568-83. PubMed ID: 18068699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf.
    Curran K; Raible DW; Lister JA
    Dev Biol; 2009 Aug; 332(2):408-17. PubMed ID: 19527705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microphthalmia transcription factor induces both retinal pigmented epithelium and neural crest melanocytes from neuroretina cells.
    Planque N; Raposo G; Leconte L; Anezo O; Martin P; Saule S
    J Biol Chem; 2004 Oct; 279(40):41911-7. PubMed ID: 15277526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avian transitin expression mirrors glial cell fate restrictions during neural crest development.
    Henion PD; Blyss GK; Luo R; An M; Maynard TM; Cole GJ; Weston JA
    Dev Dyn; 2000 May; 218(1):150-9. PubMed ID: 10822267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest.
    Curran K; Lister JA; Kunkel GR; Prendergast A; Parichy DM; Raible DW
    Dev Biol; 2010 Aug; 344(1):107-18. PubMed ID: 20460180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo.
    Jin EJ; Erickson CA; Takada S; Burrus LW
    Dev Biol; 2001 May; 233(1):22-37. PubMed ID: 11319855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate.
    Dottori M; Gross MK; Labosky P; Goulding M
    Development; 2001 Nov; 128(21):4127-38. PubMed ID: 11684651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish foxd3 is selectively required for neural crest specification, migration and survival.
    Stewart RA; Arduini BL; Berghmans S; George RE; Kanki JP; Henion PD; Look AT
    Dev Biol; 2006 Apr; 292(1):174-88. PubMed ID: 16499899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FOXD3 Promotes PAX3 Expression in Melanoma Cells.
    Kubic JD; Little EC; Kaiser RS; Young KP; Lang D
    J Cell Biochem; 2016 Feb; 117(2):533-41. PubMed ID: 26252164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pax3 down-regulation and shut-off of melanogenesis in melanoma B16/F10.9 by interleukin-6 receptor signaling.
    Kamaraju AK; Bertolotto C; Chebath J; Revel M
    J Biol Chem; 2002 Apr; 277(17):15132-41. PubMed ID: 11830592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules.
    Faraco CD; Vaz SA; Pástor MV; Erickson CA
    Dev Dyn; 2001 Mar; 220(3):212-25. PubMed ID: 11241830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel expression patterns of Pax3/Pax7 in early trunk neural crest and its melanocyte and non-melanocyte lineages in amniote embryos.
    Lacosta AM; Muniesa P; Ruberte J; Sarasa M; Domínguez L
    Pigment Cell Res; 2005 Aug; 18(4):243-51. PubMed ID: 16029418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of melanocytes from neural crest cells.
    Sommer L
    Pigment Cell Melanoma Res; 2011 Jun; 24(3):411-21. PubMed ID: 21310010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor.
    Opdecamp K; Nakayama A; Nguyen MT; Hodgkinson CA; Pavan WJ; Arnheiter H
    Development; 1997 Jun; 124(12):2377-86. PubMed ID: 9199364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives.
    Lister JA; Cooper C; Nguyen K; Modrell M; Grant K; Raible DW
    Dev Biol; 2006 Feb; 290(1):92-104. PubMed ID: 16364284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The making of a melanocyte: the specification of melanoblasts from the neural crest.
    Thomas AJ; Erickson CA
    Pigment Cell Melanoma Res; 2008 Dec; 21(6):598-610. PubMed ID: 19067969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.