These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 19403733)
41. Functional characterisation of parvulin-type peptidyl prolyl cis-trans isomerase, PinA in Dictyostelium discoideum. Haokip N; Naorem A Biochem Biophys Res Commun; 2017 Jan; 482(2):208-214. PubMed ID: 27836548 [TBL] [Abstract][Full Text] [Related]
42. Crystallographic proof for an extended hydrogen-bonding network in small prolyl isomerases. Mueller JW; Link NM; Matena A; Hoppstock L; Rüppel A; Bayer P; Blankenfeldt W J Am Chem Soc; 2011 Dec; 133(50):20096-9. PubMed ID: 22081960 [TBL] [Abstract][Full Text] [Related]
43. Identification and characterization of a novel and functional murine Pin1 isoform. Zhu JX; Dagostino E; Rejto PA; Mroczkowski B; Murray B Biochem Biophys Res Commun; 2007 Aug; 359(3):529-35. PubMed ID: 17548053 [TBL] [Abstract][Full Text] [Related]
44. Identification of eukaryotic parvulin homologues: a new subfamily of peptidylprolyl cis-trans isomerases. Rulten S; Thorpe J; Kay J Biochem Biophys Res Commun; 1999 Jun; 259(3):557-62. PubMed ID: 10364457 [TBL] [Abstract][Full Text] [Related]
45. Trypanosomatid pin1-type peptidyl-prolyl isomerase is cytosolic and not essential for cell proliferation. Erben ED; Nardelli SC; de Jesus TC; Schenkman S; Tellez-Iñon MT J Eukaryot Microbiol; 2013; 60(1):101-5. PubMed ID: 23206323 [TBL] [Abstract][Full Text] [Related]
46. Computational perspective and evaluation of plausible catalytic mechanisms of peptidyl-prolyl cis-trans isomerases. Ladani ST; Souffrant MG; Barman A; Hamelberg D Biochim Biophys Acta; 2015 Oct; 1850(10):1994-2004. PubMed ID: 25585011 [TBL] [Abstract][Full Text] [Related]
47. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Shimada N; Aoki T; Sato S; Nakamura Y; Tabata S; Ayabe S Plant Physiol; 2003 Mar; 131(3):941-51. PubMed ID: 12644647 [TBL] [Abstract][Full Text] [Related]
48. Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA--implications for the catalytic mechanism of parvulins. Heikkinen O; Seppala R; Tossavainen H; Heikkinen S; Koskela H; Permi P; Kilpeläinen I BMC Struct Biol; 2009 Mar; 9():17. PubMed ID: 19309529 [TBL] [Abstract][Full Text] [Related]
49. Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Fanghänel J; Fischer G Front Biosci; 2004 Sep; 9():3453-78. PubMed ID: 15353370 [TBL] [Abstract][Full Text] [Related]
50. Catalysis of protein folding by parvulin. Scholz C; Rahfeld J; Fischer G; Schmid FX J Mol Biol; 1997 Oct; 273(3):752-62. PubMed ID: 9356262 [TBL] [Abstract][Full Text] [Related]
51. Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity--targets--functions. Galat A Curr Top Med Chem; 2003; 3(12):1315-47. PubMed ID: 12871165 [TBL] [Abstract][Full Text] [Related]
52. Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis. Vitikainen M; Lappalainen I; Seppala R; Antelmann H; Boer H; Taira S; Savilahti H; Hecker M; Vihinen M; Sarvas M; Kontinen VP J Biol Chem; 2004 Apr; 279(18):19302-14. PubMed ID: 14976191 [TBL] [Abstract][Full Text] [Related]
53. Structure and function of the human parvulins Pin1 and Par14/17. Matena A; Rehic E; Hönig D; Kamba B; Bayer P Biol Chem; 2018 Jan; 399(2):101-125. PubMed ID: 29040060 [TBL] [Abstract][Full Text] [Related]
54. Comparative analysis of enzyme activities and mRNA levels of peptidyl prolyl cis/trans isomerases in various organs of wild type and Pin1-/- mice. Fanghänel J; Akiyama H; Uchida C; Uchida T FEBS Lett; 2006 May; 580(13):3237-45. PubMed ID: 16697379 [TBL] [Abstract][Full Text] [Related]
55. Prolyl cis/trans isomerase signalling pathways in cancer. Theuerkorn M; Fischer G; Schiene-Fischer C Curr Opin Pharmacol; 2011 Aug; 11(4):281-7. PubMed ID: 21497135 [TBL] [Abstract][Full Text] [Related]
56. Mapping the stereospecificity of peptidyl prolyl cis/trans isomerases. Schiene C; Reimer U; Schutkowski M; Fischer G FEBS Lett; 1998 Aug; 432(3):202-6. PubMed ID: 9720925 [TBL] [Abstract][Full Text] [Related]
57. Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases. Czajlik A; Kovács B; Permi P; Gáspári Z Sci Rep; 2017 Mar; 7():44504. PubMed ID: 28300139 [TBL] [Abstract][Full Text] [Related]
58. Parvulin (Par14), a peptidyl-prolyl cis-trans isomerase, is a novel rRNA processing factor that evolved in the metazoan lineage. Fujiyama-Nakamura S; Yoshikawa H; Homma K; Hayano T; Tsujimura-Takahashi T; Izumikawa K; Ishikawa H; Miyazawa N; Yanagida M; Miura Y; Shinkawa T; Yamauchi Y; Isobe T; Takahashi N Mol Cell Proteomics; 2009 Jul; 8(7):1552-65. PubMed ID: 19369196 [TBL] [Abstract][Full Text] [Related]
59. Generation of a highly active folding enzyme by combining a parvulin-type prolyl isomerase from SurA with an unrelated chaperone domain. Geitner AJ; Varga E; Wehmer M; Schmid FX J Mol Biol; 2013 Nov; 425(22):4089-98. PubMed ID: 23871892 [TBL] [Abstract][Full Text] [Related]
60. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression. Thapar R Biomolecules; 2015 May; 5(2):974-99. PubMed ID: 25992900 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]