BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 19403794)

  • 21. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation.
    Kato A; Morita K
    PLoS Comput Biol; 2016 Oct; 12(10):e1005145. PubMed ID: 27736881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reinforcement-based decision making in corticostriatal circuits: mutual constraints by neurocomputational and diffusion models.
    Ratcliff R; Frank MJ
    Neural Comput; 2012 May; 24(5):1186-229. PubMed ID: 22295983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning.
    Konovalov A; Krajbich I
    Nat Commun; 2016 Aug; 7():12438. PubMed ID: 27511383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal dynamics of prediction error processing during reward-based decision making.
    Philiastides MG; Biele G; Vavatzanidis N; Kazzer P; Heekeren HR
    Neuroimage; 2010 Oct; 53(1):221-32. PubMed ID: 20510376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy.
    Schweimer J; Hauber W
    Learn Mem; 2005; 12(3):334-42. PubMed ID: 15930509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex.
    Silvetti M; Alexander W; Verguts T; Brown JW
    Neurosci Biobehav Rev; 2014 Oct; 46 Pt 1():44-57. PubMed ID: 24239852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of novelty on reinforcement learning.
    Houillon A; Lorenz RC; Boehmer W; Rapp MA; Heinz A; Gallinat J; Obermayer K
    Prog Brain Res; 2013; 202():415-39. PubMed ID: 23317843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural basis of reinforcement learning and decision making.
    Lee D; Seo H; Jung MW
    Annu Rev Neurosci; 2012; 35():287-308. PubMed ID: 22462543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From Creatures of Habit to Goal-Directed Learners: Tracking the Developmental Emergence of Model-Based Reinforcement Learning.
    Decker JH; Otto AR; Daw ND; Hartley CA
    Psychol Sci; 2016 Jun; 27(6):848-58. PubMed ID: 27084852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiplexing signals in reinforcement learning with internal models and dopamine.
    Nakahara H
    Curr Opin Neurobiol; 2014 Apr; 25():123-9. PubMed ID: 24463329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive learning via selectionism and Bayesianism, Part I: connection between the two.
    Zhang J
    Neural Netw; 2009 Apr; 22(3):220-8. PubMed ID: 19386469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model.
    Johnson A; Redish AD
    Neural Netw; 2005 Nov; 18(9):1163-71. PubMed ID: 16198539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Risk-sensitive reinforcement learning.
    Shen Y; Tobia MJ; Sommer T; Obermayer K
    Neural Comput; 2014 Jul; 26(7):1298-328. PubMed ID: 24708369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic signals related to choices and outcomes in the dorsolateral prefrontal cortex.
    Seo H; Barraclough DJ; Lee D
    Cereb Cortex; 2007 Sep; 17 Suppl 1():i110-7. PubMed ID: 17548802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of rat behavior by a reinforcement learning algorithm in consideration of appearance probabilities of reinforcement signals.
    Murakoshi K; Noguchi T
    Biosystems; 2005 Apr; 80(1):83-90. PubMed ID: 15740837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive properties of differential learning rates for positive and negative outcomes.
    Cazé RD; van der Meer MA
    Biol Cybern; 2013 Dec; 107(6):711-9. PubMed ID: 24085507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theory meets pigeons: the influence of reward-magnitude on discrimination-learning.
    Rose J; Schmidt R; Grabemann M; Güntürkün O
    Behav Brain Res; 2009 Mar; 198(1):125-9. PubMed ID: 19041347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The model of the reward choice basing on the theory of reinforcement learning].
    Smirnitskaia IA; Frolov AA; Merzhanova GKh
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2007; 57(2):133-43. PubMed ID: 17596009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
    Wickens JR; Budd CS; Hyland BI; Arbuthnott GW
    Ann N Y Acad Sci; 2007 May; 1104():192-212. PubMed ID: 17416920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How to set the switches on this thing.
    Dayan P
    Curr Opin Neurobiol; 2012 Dec; 22(6):1068-74. PubMed ID: 22704797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.