These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19404241)

  • 21. Controlling the Formation and Structure of Nanoparticle Superlattices through Surface Ligand Behavior.
    Cordeiro MA; Leite ER; Stach EA
    Langmuir; 2016 Nov; 32(44):11606-11614. PubMed ID: 27673391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular-level control of feature separation in one-dimensional nanostructure assemblies formed by biomolecular nanolithography.
    Woehrle GH; Warner MG; Hutchison JE
    Langmuir; 2004 Jul; 20(14):5982-8. PubMed ID: 16459620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices.
    Ross MB; Ku JC; Vaccarezza VM; Schatz GC; Mirkin CA
    Nat Nanotechnol; 2015 May; 10(5):453-8. PubMed ID: 25867942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoparticle Superlattices: The Roles of Soft Ligands.
    Si KJ; Chen Y; Shi Q; Cheng W
    Adv Sci (Weinh); 2018 Jan; 5(1):1700179. PubMed ID: 29375958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic Supercrystals.
    García-Lojo D; Núñez-Sánchez S; Gómez-Graña S; Grzelczak M; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    Acc Chem Res; 2019 Jul; 52(7):1855-1864. PubMed ID: 31243968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoparticle Assembly in High Polymer Concentration Solutions Increases Superlattice Stability.
    Lee MS; Alexander-Katz A; Macfarlane RJ
    Small; 2021 Sep; 17(36):e2102107. PubMed ID: 34319651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.
    Lach M; Künzle M; Beck T
    Chemistry; 2017 Dec; 23(69):17482-17486. PubMed ID: 29076566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties.
    Lewandowski W; Wójcik M; Górecka E
    Chemphyschem; 2014 May; 15(7):1283-95. PubMed ID: 24789440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Assembly of CoPt Magnetic Nanoparticle Arrays and its Underlying Forces.
    Bian B; Chen G; Zheng Q; Du J; Lu H; Liu JP; Hu Y; Zhang Z
    Small; 2018 Aug; 14(34):e1801184. PubMed ID: 30058262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices.
    Senesi AJ; Eichelsdoerfer DJ; Brown KA; Lee B; Auyeung E; Choi CH; Macfarlane RJ; Young KL; Mirkin CA
    Adv Mater; 2014 Nov; 26(42):7235-40. PubMed ID: 25244608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
    Wang P; Gaitanaros S; Lee S; Bathe M; Shih WM; Ke Y
    J Am Chem Soc; 2016 Jun; 138(24):7733-40. PubMed ID: 27224641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlling Crystal Texture in Programmable Atom Equivalent Thin Films.
    Gabrys PA; Macfarlane RJ
    ACS Nano; 2019 Jul; 13(7):8452-8460. PubMed ID: 31268681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural order in plasmonic superlattices.
    Schulz F; Pavelka O; Lehmkühler F; Westermeier F; Okamura Y; Mueller NS; Reich S; Lange H
    Nat Commun; 2020 Jul; 11(1):3821. PubMed ID: 32732893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interplay between Short- and Long-Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice.
    Lee J; Nakouzi E; Xiao D; Wu Z; Song M; Ophus C; Chun J; Li D
    Small; 2019 Aug; 15(33):e1901966. PubMed ID: 31225719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Organized Freestanding One-Dimensional Au Nanoparticle Arrays.
    Kang M; Yuwen Y; Hu W; Yun S; Mahalingam K; Jiang B; Eyink K; Poutrina E; Richardson K; Mayer TS
    ACS Nano; 2017 Jun; 11(6):5844-5852. PubMed ID: 28582622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reinforcing Supramolecular Bonding with Magnetic Dipole Interactions to Assemble Dynamic Nanoparticle Superlattices.
    Santos PJ; Macfarlane RJ
    J Am Chem Soc; 2020 Jan; 142(3):1170-1174. PubMed ID: 31905284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analyzing fidelity and reproducibility of DNA templated plasmonic nanostructures.
    Mathur D; Klein WP; Chiriboga M; Bui H; Oh E; Nita R; Naciri J; Johns P; Fontana J; Díaz SA; Medintz IL
    Nanoscale; 2019 Nov; 11(43):20693-20706. PubMed ID: 31642466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices.
    Gabrys PA; Zornberg LZ; Macfarlane RJ
    Small; 2019 Jun; 15(26):e1805424. PubMed ID: 30970182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarization-Dependent Optical Response in Anisotropic Nanoparticle-DNA Superlattices.
    Sun L; Lin H; Park DJ; Bourgeois MR; Ross MB; Ku JC; Schatz GC; Mirkin CA
    Nano Lett; 2017 Apr; 17(4):2313-2318. PubMed ID: 28358518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.