BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19405450)

  • 21. [Morphomechanical Factors in Gastrulation Process and Differentiation of Embryonic Tissue of Xenopus laevis].
    Vasilegina YI; Kremnev SV; Nikishin DA
    Ontogenez; 2017; 48(1):39-45. PubMed ID: 30272924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos.
    Beloussov LV; Louchinskaia NN; Stein AA
    Dev Genes Evol; 2000 Feb; 210(2):92-104. PubMed ID: 10664152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphomechanical reactions and mechanically stressed structures in amphibian embryos, as related to gastrulation and axial organs formation.
    Luchinskaia NN; Cherdantsev VG; Ermakov AS; Glagoleva NS; Beloussov LV
    Biosystems; 2018 Nov; 173():18-25. PubMed ID: 30321583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Statistical study of rapid mechanodependent cell movements in deformed explants of African clawed frog Xenopus laevis embryonic tissues].
    Troshina TG; Glagoleva NS; Belousov LV
    Ontogenez; 2011; 42(5):346-56. PubMed ID: 22145303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle specification in the Xenopus laevis gastrula-stage embryo.
    Wunderlich K; Gustin JK; Domingo CR
    Dev Dyn; 2005 Aug; 233(4):1348-58. PubMed ID: 15965978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pattern regulation in isolated halves and blastomeres of early Xenopus laevis.
    Kageura H; Yamana K
    J Embryol Exp Morphol; 1983 Apr; 74():221-34. PubMed ID: 6886596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relocations of cell convergence sites and formation of pharyngula-like shapes in mechanically relaxed Xenopus embryos.
    Kornikova ES; Korvin-Pavlovskaya EG; Beloussov LV
    Dev Genes Evol; 2009 Jan; 219(1):1-10. PubMed ID: 18949484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epibolic extension of the presumptive ectodermal layer of embryos of the newt Cynops pyrrhogaster before and during gastrulation.
    Komazaki S
    J Exp Zool; 1992 Oct; 263(4):414-22. PubMed ID: 1402739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conserved patterns of cell movements during vertebrate gastrulation.
    Solnica-Krezel L
    Curr Biol; 2005 Mar; 15(6):R213-28. PubMed ID: 15797016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin alpha(5)beta(1), fibronectin, and tissue geometry.
    Davidson LA; Hoffstrom BG; Keller R; DeSimone DW
    Dev Biol; 2002 Feb; 242(2):109-29. PubMed ID: 11820810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis.
    Keller RE
    J Embryol Exp Morphol; 1980 Dec; 60():201-34. PubMed ID: 7310269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [A quantitative study of regional and stage specific reaction of African clawed frog embryonic tissues on mechanical stress].
    Glagoleva NS; Belousov LV; Shteĭn AA; Luchinskaia NN
    Ontogenez; 2003; 34(4):292-300. PubMed ID: 12942740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultraviolet irradiation of eggs and blastomere isolation experiments suggest that gastrulation in the direct developing ascidian, Molgula pacifica, requires localized cytoplasmic determinants in the egg and cell signaling beginning at the two-cell stage.
    Bates WR
    Evol Dev; 2004; 6(3):180-6. PubMed ID: 15099305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage.
    Cooke J; Webber JA
    J Embryol Exp Morphol; 1985 Aug; 88():85-112. PubMed ID: 4078542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Role of Mechano-Dependent Cell Movements in the Establishment of Spatial Organization of Axial Rudiments in Xenopus laevis Embryos].
    Bredov DV; Evstifeeva AU
    Ontogenez; 2017; 48(1):21-7. PubMed ID: 30272919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of three-notochord explants for imaging analysis of the cell movements of convergent extension during early Xenopus morphogenesis.
    Goto T; Keller R
    Dev Growth Differ; 2021 Oct; 63(8):429-438. PubMed ID: 34464453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos.
    Slack JM; Forman D
    J Embryol Exp Morphol; 1980 Apr; 56():283-99. PubMed ID: 7400747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. When does the anterior endomesderm meet the anterior-most neuroectoderm during Xenopus gastrulation?
    Koide T; Umesono K; Hashimoto C
    Int J Dev Biol; 2002 Sep; 46(6):777-83. PubMed ID: 12382943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical feedback in morphogenesis, as exemplified by stretch responses of amphibian embryonic tissues.
    Beloussov LV; Luchinskaia NN
    Biochem Cell Biol; 1995; 73(7-8):555-63. PubMed ID: 8703426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xenopus p21-activated kinase 5 regulates blastomeres' adhesive properties during convergent extension movements.
    Faure S; Cau J; de Santa Barbara P; Bigou S; Ge Q; Delsert C; Morin N
    Dev Biol; 2005 Jan; 277(2):472-92. PubMed ID: 15617688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.