These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 19405471)

  • 1. High hydrogen storage capacity of porous carbons prepared by using activated carbon.
    Wang H; Gao Q; Hu J
    J Am Chem Soc; 2009 May; 131(20):7016-22. PubMed ID: 19405471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials.
    Yang Z; Xia Y; Mokaya R
    J Am Chem Soc; 2007 Feb; 129(6):1673-9. PubMed ID: 17243684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping.
    Xia Y; Walker GS; Grant DM; Mokaya R
    J Am Chem Soc; 2009 Nov; 131(45):16493-9. PubMed ID: 19852461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping.
    Yang Z; Xia Y; Sun X; Mokaya R
    J Phys Chem B; 2006 Sep; 110(37):18424-31. PubMed ID: 16970467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage.
    Gogotsi Y; Dash RK; Yushin G; Yildirim T; Laudisio G; Fischer JE
    J Am Chem Soc; 2005 Nov; 127(46):16006-7. PubMed ID: 16287270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.
    Cabal B; Budinova T; Ania CO; Tsyntsarski B; Parra JB; Petrova B
    J Hazard Mater; 2009 Jan; 161(2-3):1150-6. PubMed ID: 18541368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks.
    Kuchta B; Firlej L; Mohammadhosseini A; Boulet P; Beckner M; Romanos J; Pfeifer P
    J Am Chem Soc; 2012 Sep; 134(36):15130-7. PubMed ID: 22897685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption.
    Im JS; Park SJ; Kim TJ; Kim YH; Lee YS
    J Colloid Interface Sci; 2008 Feb; 318(1):42-9. PubMed ID: 17988675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.
    Kim BJ; Park SJ
    J Colloid Interface Sci; 2007 Jul; 311(2):619-21. PubMed ID: 17449054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.
    Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(25):8875-83. PubMed ID: 19496589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordered porous carbon with tailored pore size for electrochemical hydrogen storage application.
    Fang B; Zhou H; Honma I
    J Phys Chem B; 2006 Mar; 110(10):4875-80. PubMed ID: 16526726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen adsorption on functionalized nanoporous activated carbons.
    Zhao XB; Xiao B; Fletcher AJ; Thomas KM
    J Phys Chem B; 2005 May; 109(18):8880-8. PubMed ID: 16852056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application.
    Cai J; Li L; Lv X; Yang C; Zhao X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):167-75. PubMed ID: 24344972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fluorination modification on pore size controlled electrospun activated carbon fibers for high capacity methane storage.
    Im JS; Jung MJ; Lee YS
    J Colloid Interface Sci; 2009 Nov; 339(1):31-5. PubMed ID: 19691967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature.
    Millward AR; Yaghi OM
    J Am Chem Soc; 2005 Dec; 127(51):17998-9. PubMed ID: 16366539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen storage in engineered carbon nanospaces.
    Burress J; Kraus M; Beckner M; Cepel R; Suppes G; Wexler C; Pfeifer P
    Nanotechnology; 2009 May; 20(20):204026. PubMed ID: 19420674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane.
    Hayashi J; Yamamoto N; Horikawa T; Muroyama K; Gomes VG
    J Colloid Interface Sci; 2005 Jan; 281(2):437-43. PubMed ID: 15571700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches.
    Meisner GP; Hu Q
    Nanotechnology; 2009 May; 20(20):204023. PubMed ID: 19420671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-surface-area carbon molecular sieves for selective CO(2) adsorption.
    Wahby A; Ramos-Fernández JM; Martínez-Escandell M; Sepúlveda-Escribano A; Silvestre-Albero J; Rodríguez-Reinoso F
    ChemSusChem; 2010 Aug; 3(8):974-81. PubMed ID: 20586092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen sorption on palladium-doped sepiolite-derived carbon nanofibers.
    Back CK; Sandí G; Prakash J; Hranisavljevic J
    J Phys Chem B; 2006 Aug; 110(33):16225-31. PubMed ID: 16913747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.