These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 19405722)
21. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Marches R; Mikoryak C; Wang RH; Pantano P; Draper RK; Vitetta ES Nanotechnology; 2011 Mar; 22(9):095101. PubMed ID: 21258147 [TBL] [Abstract][Full Text] [Related]
22. Novel phthalocyanine-based polymeric micelles with high near-infrared photothermal conversion efficiency under 808 nm laser irradiation for in vivo cancer therapy. Li L; Yang Q; Shi L; Zheng N; Li Z; Li K; Qiao S; Jia T; Sun T; Wang Y J Mater Chem B; 2019 Apr; 7(14):2247-2251. PubMed ID: 32254673 [TBL] [Abstract][Full Text] [Related]
23. A novel Met-IR-782 near-infrared probe for fluorescent imaging-guided photothermal therapy in breast cancer. Wu Y; Zhang W; Xu D; Ding L; Ma R; Wu JZ; Tang JH Lasers Med Sci; 2018 Sep; 33(7):1601-1608. PubMed ID: 29948451 [TBL] [Abstract][Full Text] [Related]
24. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. Antaris AL; Robinson JT; Yaghi OK; Hong G; Diao S; Luong R; Dai H ACS Nano; 2013 Apr; 7(4):3644-52. PubMed ID: 23521224 [TBL] [Abstract][Full Text] [Related]
25. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy. Yu X; Yang K; Chen X; Li W Biomaterials; 2017 Oct; 143():120-129. PubMed ID: 28787664 [TBL] [Abstract][Full Text] [Related]
26. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. Hashida Y; Tanaka H; Zhou S; Kawakami S; Yamashita F; Murakami T; Umeyama T; Imahori H; Hashida M J Control Release; 2014 Jan; 173():59-66. PubMed ID: 24211651 [TBL] [Abstract][Full Text] [Related]
27. Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy. Zhao H; Chao Y; Liu J; Huang J; Pan J; Guo W; Wu J; Sheng M; Yang K; Wang J; Liu Z Theranostics; 2016; 6(11):1833-43. PubMed ID: 27570554 [TBL] [Abstract][Full Text] [Related]
28. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. Vimala K; Shanthi K; Sundarraj S; Kannan S J Colloid Interface Sci; 2017 Feb; 488():92-108. PubMed ID: 27821343 [TBL] [Abstract][Full Text] [Related]
29. A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Hou L; Yang X; Ren J; Wang Y; Zhang H; Feng Q; Shi Y; Shan X; Yuan Y; Zhang Z Int J Nanomedicine; 2016; 11():607-24. PubMed ID: 26917960 [TBL] [Abstract][Full Text] [Related]
30. STUDY OF THE NEAR INFRARED-MEDIATED HEATING OF DISPERSIONS OF PROTEIN-COATED PRISTINE AND CARBOXYLATED SINGLE-WALLED CARBON NANOTUBES. Sheardy AT; Taylor JJ; Chilek JL; Li S; Wang R; Draper RK; Pantano P Int J Nanosci; 2012 Oct; 11(5):. PubMed ID: 23645950 [TBL] [Abstract][Full Text] [Related]
31. EphrinA I-targeted nanoshells for photothermal ablation of prostate cancer cells. Gobin AM; Moon JJ; West JL Int J Nanomedicine; 2008; 3(3):351-8. PubMed ID: 18990944 [TBL] [Abstract][Full Text] [Related]
32. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles. Li W; Peng J; Tan L; Wu J; Shi K; Qu Y; Wei X; Qian Z Biomaterials; 2016 Nov; 106():119-33. PubMed ID: 27561883 [TBL] [Abstract][Full Text] [Related]
33. Selective pathogen targeting and macrophage evading carbon nanotubes through dextran sulfate coating and PEGylation for photothermal theranostics. Kotagiri N; Lee JS; Kim JW J Biomed Nanotechnol; 2013 Jun; 9(6):1008-16. PubMed ID: 23858965 [TBL] [Abstract][Full Text] [Related]
34. Nanophotothermolysis of multiple scattered cancer cells with carbon nanotubes guided by time-resolved infrared thermal imaging. Biris AS; Boldor D; Palmer J; Monroe WT; Mahmood M; Dervishi E; Xu Y; Li Z; Galanzha EI; Zharov VP J Biomed Opt; 2009; 14(2):021007. PubMed ID: 19405720 [TBL] [Abstract][Full Text] [Related]
35. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Burlaka A; Lukin S; Prylutska S; Remeniak O; Prylutskyy Y; Shuba M; Maksimenko S; Ritter U; Scharff P Exp Oncol; 2010 Mar; 32(1):48-50. PubMed ID: 20332757 [TBL] [Abstract][Full Text] [Related]
36. Gold nanoparticles grown on ionic liquid-functionalized single-walled carbon nanotubes: new materials for photothermal therapy. Meng L; Niu L; Li L; Lu Q; Fei Z; Dyson PJ Chemistry; 2012 Oct; 18(42):13314-9. PubMed ID: 22945763 [TBL] [Abstract][Full Text] [Related]
37. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Tang S; Chen M; Zheng N Small; 2014 Aug; 10(15):3139-44. PubMed ID: 24729448 [TBL] [Abstract][Full Text] [Related]
38. Photo-decomposable Organic Nanoparticles for Combined Tumor Optical Imaging and Multiple Phototherapies. Miao W; Kim H; Gujrati V; Kim JY; Jon H; Lee Y; Choi M; Kim J; Lee S; Lee DY; Kang S; Jon S Theranostics; 2016; 6(13):2367-2379. PubMed ID: 27877241 [TBL] [Abstract][Full Text] [Related]
39. High Performance In Vivo Near-IR (>1 μm) Imaging and Photothermal Cancer Therapy with Carbon Nanotubes. Robinson JT; Welsher K; Tabakman SM; Sherlock SP; Wang H; Luong R; Dai H Nano Res; 2010 Oct; 3(11):779-793. PubMed ID: 21804931 [TBL] [Abstract][Full Text] [Related]
40. Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Huang N; Wang H; Zhao J; Lui H; Korbelik M; Zeng H Lasers Surg Med; 2010 Nov; 42(9):638-48. PubMed ID: 20949599 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]