BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19405741)

  • 1. In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence.
    Uehlinger P; Gabrecht T; Glanzmann T; Ballini JP; Radu A; Andrejevic S; Monnier P; Wagnières G
    J Biomed Opt; 2009; 14(2):024011. PubMed ID: 19405741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation.
    Gabrecht T; Andrejevic-Blant S; Wagnières G
    Photochem Photobiol; 2007; 83(2):450-8. PubMed ID: 17094717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements.
    Arifler D; MacAulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2006; 11(6):064027. PubMed ID: 17212550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared autofluorescence spectroscopy for in vivo identification of hyperplastic and adenomatous polyps in the colon.
    Shao X; Zheng W; Huang Z
    Biosens Bioelectron; 2011 Dec; 30(1):118-22. PubMed ID: 21959224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved fluorescence spectroscopy of white-spot caries in human enamel.
    Ferretti de Oliveira F; Ito AS; Bachmann L
    Appl Opt; 2010 Apr; 49(12):2244-9. PubMed ID: 20411003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic analysis of the autofluorescence from human bronchus using an ultraviolet laser diode.
    Kobayashi M; Shibuya K; Hoshino H; Fujisawa T
    J Biomed Opt; 2002 Oct; 7(4):603-8. PubMed ID: 12421127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling.
    Shao X; Zheng W; Huang Z
    J Biomed Opt; 2011 Jun; 16(6):067005. PubMed ID: 21721826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic fluorescence spectroscopy for endoscopic detection and localization of the endobronchial cancerous lesions.
    Fawzy Y; Zeng H
    J Biomed Opt; 2008; 13(6):064022. PubMed ID: 19123668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy.
    Butte PV; Fang Q; Jo JA; Yong WH; Pikul BK; Black KL; Marcu L
    J Biomed Opt; 2010; 15(2):027008. PubMed ID: 20459282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers.
    Zellweger M; Grosjean P; Goujon D; Monnier P; van den Bergh H; Wagnières G
    J Biomed Opt; 2001 Jan; 6(1):41-51. PubMed ID: 11178579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined depth- and time-resolved autofluorescence spectroscopy of epithelial tissue.
    Wu Y; Qu JY
    Opt Lett; 2006 Jun; 31(12):1833-5. PubMed ID: 16729086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence.
    Gillenwater A; Jacob R; Ganeshappa R; Kemp B; El-Naggar AK; Palmer JL; Clayman G; Mitchell MF; Richards-Kortum R
    Arch Otolaryngol Head Neck Surg; 1998 Nov; 124(11):1251-8. PubMed ID: 9821929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.
    Alimova A; Katz A; Sriramoju V; Budansky Y; Bykov AA; Zeylikovich R; Alfano RR
    J Biomed Opt; 2007; 12(1):014004. PubMed ID: 17343479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands.
    Subhash N; Mallia JR; Thomas SS; Mathews A; Sebastian P; Madhavan J
    J Biomed Opt; 2006; 11(1):014018. PubMed ID: 16526895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of ultraviolet irradiated mouse skin histological stages by bimodal spectroscopy: multiple excitation autofluorescence and diffuse reflectance.
    Amouroux M; Díaz-Ayil G; Blondel WC; Bourg-Heckly G; Leroux A; Guillemin F
    J Biomed Opt; 2009; 14(1):014011. PubMed ID: 19256699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual digital video-autofluorescence imaging for detection of pre-neoplastic lesions.
    Lee P; Brokx HA; Postmus PE; Sutedja TG
    Lung Cancer; 2007 Oct; 58(1):44-9. PubMed ID: 17532537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-sensitivity and specificity of laser-induced autofluorescence spectra for detection of colorectal cancer with an artificial neural network.
    Kwek LC; Fu S; Chia TC; Diong CH; Tang CL; Krishnan SM
    Appl Opt; 2005 Jul; 44(19):4004-8. PubMed ID: 16004047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autofluorescence detection of tumors in the human lung--spectroscopical measurements in situ, in an in vivo model and in vitro.
    Hüttenberger D; Gabrecht T; Wagnières G; Weber B; Linder A; Foth HJ; Freitag L
    Photodiagnosis Photodyn Ther; 2008 Jun; 5(2):139-47. PubMed ID: 19356645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autofluorescence bronchoscopy: quantification of inter-patient variations of fluorescence intensity.
    Gabrecht T; Lovisa B; van den Bergh H; Wagnières G
    Lasers Med Sci; 2009 Jan; 24(1):45-51. PubMed ID: 18060444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrometric measurement in laryngeal cancer.
    Arens C; Reussner D; Neubacher H; Woenckhaus J; Glanz H
    Eur Arch Otorhinolaryngol; 2006 Nov; 263(11):1001-7. PubMed ID: 16944236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.