These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19405744)

  • 1. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels.
    Rossow M; Mantulin WW; Gratton E
    J Biomed Opt; 2009; 14(2):024014. PubMed ID: 19405744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving the lateral component of blood flow velocity based on ultrasound speckle size change with scan direction and speed.
    Xu T; Bashford GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():491-4. PubMed ID: 19963464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies.
    Xu H; Springett R; Dehghani H; Pogue BW; Paulsen KD; Dunn JF
    Appl Opt; 2005 Apr; 44(11):2177-88. PubMed ID: 15835363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement.
    Lin Y; He L; Shang Y; Yu G
    J Biomed Opt; 2012 Jan; 17(1):010502. PubMed ID: 22352631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-piexl methods for improving vector quality in echo PIV flow, imaging technology.
    Niu L; Wang J; Qian M; Zheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():487-90. PubMed ID: 19963463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy.
    Pan X; Yu H; Shi X; Korzh V; Wohland T
    J Biomed Opt; 2007; 12(1):014034. PubMed ID: 17343509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning laser image correlation for measurement of flow.
    Rossow MJ; Mantulin WW; Gratton E
    J Biomed Opt; 2010; 15(2):026003. PubMed ID: 20459248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.
    Coolbaugh CL; Bush EC; Caskey CF; Damon BM; Towse TF
    J Appl Physiol (1985); 2016 Oct; 121(4):849-857. PubMed ID: 27516540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of visible and NIR imaging equipment for small animals with smart pad.
    Eum NS; Han JH; Seong KW; Lee JH; Park HJ
    Biomed Mater Eng; 2014; 24(6):3033-41. PubMed ID: 25227011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging.
    Cooper RJ; Bhatt D; Everdell NL; Hebden JC
    Phys Med Biol; 2009 Sep; 54(18):N403-8. PubMed ID: 19687562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of high-sensitivity near-infrared fluorescence imaging device for early cancer detection.
    Chen Y; Intes X; Chance B
    Biomed Instrum Technol; 2005; 39(1):75-85. PubMed ID: 15742853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes.
    Sato T; Nambu I; Takeda K; Aihara T; Yamashita O; Isogaya Y; Inoue Y; Otaka Y; Wada Y; Kawato M; Sato MA; Osu R
    Neuroimage; 2016 Nov; 141():120-132. PubMed ID: 27374729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.
    Kim D; Park SH
    J Endod; 2016 Nov; 42(11):1660-1666. PubMed ID: 27651041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a continuous wave blood flow bi-directional Doppler system.
    García F; Moreno E; Solano J; Barragán M; Sotomayor A; Fuentes M; Acevedo P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e307-12. PubMed ID: 16860362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel approaches to the measurement of arterial blood flow from dynamic digital X-ray images.
    Rhode KS; Lambrou T; Hawkes DJ; Seifalian AM
    IEEE Trans Med Imaging; 2005 Apr; 24(4):500-13. PubMed ID: 15822808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamically scaled phantom phase contrast MRI compared to true-scale computational modeling of coronary artery flow.
    Beier S; Ormiston JA; Webster MW; Cater JE; Norris SE; Medrano-Gracia P; Young AA; Cowan BR
    J Magn Reson Imaging; 2016 Oct; 44(4):983-92. PubMed ID: 27042817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Spectral Doppler for an Array-Based Preclinical Ultrasound Scanner Using a Rotating Phantom.
    Kenwright DA; Anderson T; Moran CM; Hoskins PR
    Ultrasound Med Biol; 2015 Aug; 41(8):2232-9. PubMed ID: 25957754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BIAN: A Multilayer Microfluidic-Based Tissue-Mimicking Phantom for Near-Infrared Imaging.
    Li T; Kalyanov A; Wolf M; Ackermann M; Russomanno E; Jiang J; Mata ADC
    Adv Exp Med Biol; 2023; 1438():179-183. PubMed ID: 37845458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of eigendecomposition-based adaptive clutter filter for color flow imaging.
    Song F; Zhang D; Gong X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e67-71. PubMed ID: 16844157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.