These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19405777)

  • 1. Line scan fluorescence correlation spectroscopy for three-dimensional microfluidic flow velocity measurements.
    Pan X; Shi X; Korzh V; Yu H; Wohland T
    J Biomed Opt; 2009; 14(2):024049. PubMed ID: 19405777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy.
    Pan X; Yu H; Shi X; Korzh V; Wohland T
    J Biomed Opt; 2007; 12(1):014034. PubMed ID: 17343509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of fluorescence correlation spectroscopy for velocity imaging in microfluidic devices.
    Kuricheti KK; Buschmann V; Weston KD
    Appl Spectrosc; 2004 Oct; 58(10):1180-6. PubMed ID: 15527518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Position-sensitive scanning fluorescence correlation spectroscopy.
    Skinner JP; Chen Y; Müller JD
    Biophys J; 2005 Aug; 89(2):1288-301. PubMed ID: 15894645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements.
    Pan X; Foo W; Lim W; Fok MH; Liu P; Yu H; Maruyama I; Wohland T
    Rev Sci Instrum; 2007 May; 78(5):053711. PubMed ID: 17552829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing observation volumes and the role of excitation saturation in one-photon fluorescence fluctuation spectroscopy.
    Nagy A; Wu J; Berland KM
    J Biomed Opt; 2005; 10(4):44015. PubMed ID: 16178648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy.
    Liu K; Tian Y; Burrows SM; Reif RD; Pappas D
    Anal Chim Acta; 2009 Sep; 651(1):85-90. PubMed ID: 19733740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and dynamic range of spatial image correlation and cross-correlation spectroscopy.
    Costantino S; Comeau JW; Kolin DL; Wiseman PW
    Biophys J; 2005 Aug; 89(2):1251-60. PubMed ID: 15923223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope.
    Ohsugi Y; Kinjo M
    J Biomed Opt; 2009; 14(1):014030. PubMed ID: 19256718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of dual-focus fluorescence correlation spectroscopy to microfluidic flow-velocity measurement.
    Arbour TJ; Enderlein J
    Lab Chip; 2010 May; 10(10):1286-92. PubMed ID: 20445882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.
    Park DW; Kruger GH; Rubin JM; Hamilton J; Gottschalk P; Dodde RE; Shih AJ; Weitzel WF
    J Ultrasound Med; 2013 Oct; 32(10):1815-30. PubMed ID: 24065263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the Laplace transform in time-domain optical spectroscopy and imaging.
    Liemert A; Kienle A
    J Biomed Opt; 2015 Nov; 20(11):110502. PubMed ID: 26580698
    [No Abstract]   [Full Text] [Related]  

  • 13. Laser induced fluorescence photobleaching anemometer for microfluidic devices.
    Wang GR
    Lab Chip; 2005 Apr; 5(4):450-6. PubMed ID: 15791344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring fast dynamics in solutions and cells with a laser scanning microscope.
    Digman MA; Brown CM; Sengupta P; Wiseman PW; Horwitz AR; Gratton E
    Biophys J; 2005 Aug; 89(2):1317-27. PubMed ID: 15908582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels.
    Rossow M; Mantulin WW; Gratton E
    J Biomed Opt; 2009; 14(2):024014. PubMed ID: 19405744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror.
    Etienne E; Lenne PF; Sturgis JN; Rigneault H
    Appl Opt; 2006 Jun; 45(18):4497-507. PubMed ID: 16778960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal sampling with prior information of the image geometry in microfluidic MRI.
    Han SH; Cho H; Paulsen JL
    J Magn Reson; 2015 Mar; 252():78-86. PubMed ID: 25676820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial fluorescence cross-correlation spectroscopy.
    Jaffiol R; Blancquaert Y; Delon A; Derouard J
    Appl Opt; 2006 Feb; 45(6):1225-35. PubMed ID: 16523786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated radial Fourier-velocity encoding using compressed sensing.
    Hilbert F; Wech T; Hahn D; Köstler H
    Z Med Phys; 2014 Sep; 24(3):190-200. PubMed ID: 24239136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vector-velocity estimation in swept-scan using a K-space approach.
    Jeng GS; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):947-58. PubMed ID: 16764449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.