These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19406899)

  • 1. Actinomyces naeslundii in initial dental biofilm formation.
    Dige I; Raarup MK; Nyengaard JR; Kilian M; Nyvad B
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2116-2126. PubMed ID: 19406899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization.
    Dige I; Nilsson H; Kilian M; Nyvad B
    Eur J Oral Sci; 2007 Dec; 115(6):459-67. PubMed ID: 18028053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle.
    Cavalcanti IM; Del Bel Cury AA; Jenkinson HF; Nobbs AH
    Mol Oral Microbiol; 2017 Feb; 32(1):60-73. PubMed ID: 26834007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic changes in the initial colonization of Actinomyces naeslundii and Streptococcus gordonii using a new animal model.
    Zhang X; Senpuku H
    Jpn J Infect Dis; 2013; 66(1):11-6. PubMed ID: 23429078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of stereological principles for quantification of bacteria in intact dental biofilms.
    Dige I; Nyengaard JR; Kilian M; Nyvad B
    Oral Microbiol Immunol; 2009 Feb; 24(1):69-75. PubMed ID: 19121073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization.
    Al-Ahmad A; Wunder A; Auschill TM; Follo M; Braun G; Hellwig E; Arweiler NB
    J Med Microbiol; 2007 May; 56(Pt 5):681-687. PubMed ID: 17446294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Difference in initial dental biofilm accumulation between night and day.
    Dige I; Schlafer S; Nyvad B
    Acta Odontol Scand; 2012 Dec; 70(6):441-7. PubMed ID: 22126594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization.
    Al-Ahmad A; Follo M; Selzer AC; Hellwig E; Hannig M; Hannig C
    J Med Microbiol; 2009 Oct; 58(Pt 10):1359-1366. PubMed ID: 19528150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34.
    Periasamy S; Chalmers NI; Du-Thumm L; Kolenbrander PE
    Appl Environ Microbiol; 2009 May; 75(10):3250-7. PubMed ID: 19286780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and application of a flow system for in vitro multispecies oral biofilm formation.
    Blanc V; Isabal S; Sánchez MC; Llama-Palacios A; Herrera D; Sanz M; León R
    J Periodontal Res; 2014 Jun; 49(3):323-32. PubMed ID: 23815431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans.
    Filoche SK; Anderson SA; Sissons CH
    Oral Microbiol Immunol; 2004 Oct; 19(5):322-6. PubMed ID: 15327645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque.
    Palmer RJ; Gordon SM; Cisar JO; Kolenbrander PE
    J Bacteriol; 2003 Jun; 185(11):3400-9. PubMed ID: 12754239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo study of the initial bacterial adhesion on different implant materials.
    Al-Ahmad A; Wiedmann-Al-Ahmad M; Fackler A; Follo M; Hellwig E; Bächle M; Hannig C; Han JS; Wolkewitz M; Kohal R
    Arch Oral Biol; 2013 Sep; 58(9):1139-47. PubMed ID: 23694907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex fluorescence in situ hybridization (M-FISH) and confocal laser scanning microscopy (CLSM) to analyze multispecies oral biofilms.
    Karygianni L; Hellwig E; Al-Ahmad A
    Methods Mol Biol; 2014; 1147():65-72. PubMed ID: 24664826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.
    Arai T; Ochiai K; Senpuku H
    J Microbiol Methods; 2015 Feb; 109():160-6. PubMed ID: 25555820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a multispecies biofilm community by four root canal bacteria.
    Chávez de Paz LE
    J Endod; 2012 Mar; 38(3):318-23. PubMed ID: 22341068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of urease expression of Actinomyces naeslundii in biofilms in response to pH and carbohydrate.
    Liy Y; Dan J; Tao H; Xuedong Z
    Oral Microbiol Immunol; 2008 Aug; 23(4):315-9. PubMed ID: 18582331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplex FISH analysis of a six-species bacterial biofilm.
    Thurnheer T; Gmür R; Guggenheim B
    J Microbiol Methods; 2004 Jan; 56(1):37-47. PubMed ID: 14706749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm formation by Porphyromonas gingivalis and Streptococcus gordonii.
    Cook GS; Costerton JW; Lamont RJ
    J Periodontal Res; 1998 Aug; 33(6):323-7. PubMed ID: 9777582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH landscapes in a novel five-species model of early dental biofilm.
    Schlafer S; Raarup MK; Meyer RL; Sutherland DS; Dige I; Nyengaard JR; Nyvad B
    PLoS One; 2011; 6(9):e25299. PubMed ID: 21966490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.