BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19407141)

  • 1. A reduced abbreviated indirect calorimetry protocol is clinically acceptable for use in spontaneously breathing patients with traumatic brain injury.
    McEvoy C; Cooke SR; Young IS
    Nutr Clin Pract; 2009; 24(4):513-9. PubMed ID: 19407141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resting energy expenditure in non-ventilated, non-sedated patients recovering from serious traumatic brain injury: comparison of prediction equations with indirect calorimetry values.
    McEvoy CT; Cran GW; Cooke SR; Young IS
    Clin Nutr; 2009 Oct; 28(5):526-32. PubMed ID: 19423202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients.
    Savard JF; Faisy C; Lerolle N; Guerot E; Diehl JL; Fagon JY
    Crit Care Med; 2008 Apr; 36(4):1175-83. PubMed ID: 18379244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of abbreviated indirect calorimetry protocols for energy expenditure measurement in critically ill children.
    Smallwood CD; Mehta NM
    JPEN J Parenter Enteral Nutr; 2012 Nov; 36(6):693-9. PubMed ID: 22510266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing the time period of steady state does not affect the accuracy of energy expenditure measurements by indirect calorimetry.
    Reeves MM; Davies PS; Bauer J; Battistutta D
    J Appl Physiol (1985); 2004 Jul; 97(1):130-4. PubMed ID: 15020579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of resting energy expenditure prediction methods with measured resting energy expenditure in obese, hospitalized adults.
    Anderegg BA; Worrall C; Barbour E; Simpson KN; Delegge M
    JPEN J Parenter Enteral Nutr; 2009; 33(2):168-75. PubMed ID: 19251910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indirect calorimetry methods for determination of energy expenditure.
    Dárdai E
    Acta Chir Hung; 1990; 31(1):47-61. PubMed ID: 2122623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of effect of sleep on energy expenditure and physiologic measures in critically ill burn patients.
    Gottschlich MM; Jenkins M; Mayes T; Khoury J; Kagan R; Warden GD
    J Am Diet Assoc; 1997 Feb; 97(2):131-9. PubMed ID: 9020239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate determination of energy needs in hospitalized patients.
    Boullata J; Williams J; Cottrell F; Hudson L; Compher C
    J Am Diet Assoc; 2007 Mar; 107(3):393-401. PubMed ID: 17324656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.
    Spears KE; Kim H; Behall KM; Conway JM
    J Am Diet Assoc; 2009 May; 109(5):836-45. PubMed ID: 19394470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimum Time to Achieve the Steady State and Optimum Abbreviated Period to Estimate the Resting Energy Expenditure by Indirect Calorimetry in Healthy Young Adults.
    Borges JH; Langer RD; Cirolini VX; Páscoa MA; Guerra-Júnior G; Gonçalves EM
    Nutr Clin Pract; 2016 Jun; 31(3):349-54. PubMed ID: 26888859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring energy expenditure in community-dwelling older adults: are portable methods valid and acceptable?
    Fares S; Miller MD; Masters S; Crotty M
    J Am Diet Assoc; 2008 Mar; 108(3):544-8. PubMed ID: 18313438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of metabolic monitors in critically ill, ventilated patients.
    Singer P; Pogrebetsky I; Attal-Singer J; Cohen J
    Nutrition; 2006; 22(11-12):1077-86. PubMed ID: 16973331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period.
    Vazquez Martinez JL; Martinez-Romillo PD; Diez Sebastian J; Ruza Tarrio F
    Pediatr Crit Care Med; 2004 Jan; 5(1):19-27. PubMed ID: 14697104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the VO2000 calorimeter for measuring resting metabolic rate.
    Wahrlich V; Anjos LA; Going SB; Lohman TG
    Clin Nutr; 2006 Aug; 25(4):687-92. PubMed ID: 16698140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a 5-minute steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients.
    Frankenfield DC; Sarson GY; Blosser SA; Cooney RN; Smith JS
    J Am Coll Nutr; 1996 Aug; 15(4):397-402. PubMed ID: 8829096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between Medgem and Deltatrac resting metabolic rate measurements.
    Compher C; Hise M; Sternberg A; Kinosian BP
    Eur J Clin Nutr; 2005 Oct; 59(10):1136-41. PubMed ID: 16015258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical accuracy of the MedGem indirect calorimeter for measuring resting energy expenditure in cancer patients.
    Reeves MM; Capra S; Bauer J; Davies PS; Battistutta D
    Eur J Clin Nutr; 2005 Apr; 59(4):603-10. PubMed ID: 15741986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of an abbreviated indirect calorimetry protocol for measurement of resting energy expenditure in mechanically ventilated and spontaneously breathing critically ill patients.
    Petros S; Engelmann L
    Intensive Care Med; 2001 Jul; 27(7):1164-8. PubMed ID: 11534564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.