These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19407872)

  • 1. Sub-Doppler resolution limited Lamb-dip spectroscopy of NO with a quantum cascade distributed feedback laser.
    Remillard J; Uy D; Weber W; Capasso F; Gmachl C; Hutchinson A; Sivco D; Baillargeon J; Cho A
    Opt Express; 2000 Sep; 7(7):243-8. PubMed ID: 19407872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser.
    Castrillo A; De Tommasi E; Gianfrani L; Sirigu L; Faist J
    Opt Lett; 2006 Oct; 31(20):3040-2. PubMed ID: 17001393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3(+).
    Chen HC; Hsiao CY; Peng JL; Amano T; Shy JT
    Phys Rev Lett; 2012 Dec; 109(26):263002. PubMed ID: 23368556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadening the optical bandwidth of quantum cascade lasers using RF noise current perturbations.
    Pinto THP; Kirkbride JMR; Ritchie GAD
    Opt Lett; 2018 Apr; 43(8):1931-1934. PubMed ID: 29652402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-Doppler double-resonance spectroscopy of NH(3) using a tunable-diode laser and a CO laser.
    Weber WH; Terhune RW
    Opt Lett; 1981 Oct; 6(10):455-7. PubMed ID: 19710735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doppler-free spectroscopy with a terahertz quantum-cascade laser.
    Wienold M; Alam T; Schrottke L; Grahn HT; Hübers HW
    Opt Express; 2018 Mar; 26(6):6692-6699. PubMed ID: 29609356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers.
    Sharpe SW; Kelly JF; Hartman JS; Gmachl C; Capasso F; Sivco DL; Baillargeon JN; Cho AY
    Opt Lett; 1998 Sep; 23(17):1396-8. PubMed ID: 18091797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm.
    Kassi S; Stoltmann T; Casado M; Daëron M; Campargue A
    J Chem Phys; 2018 Feb; 148(5):054201. PubMed ID: 29421897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent transient spectroscopy with continuous wave quantum cascade lasers.
    Kirkbride JM; Causier SK; McCormack EA; Weidmann D; Ritchie GA
    Phys Chem Chem Phys; 2013 Feb; 15(8):2684-91. PubMed ID: 23321575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feed-forward coherent link from a comb to a diode laser: Application to widely tunable cavity ring-down spectroscopy.
    Gotti R; Prevedelli M; Kassi S; Marangoni M; Romanini D
    J Chem Phys; 2018 Feb; 148(5):054202. PubMed ID: 29421905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comb-locked Lamb-dip spectrometer.
    Gatti D; Gotti R; Gambetta A; Belmonte M; Galzerano G; Laporta P; Marangoni M
    Sci Rep; 2016 Jun; 6():27183. PubMed ID: 27263858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency measurements and self-broadening of sub-Doppler transitions in the
    Twagirayezu S; Hall GE; Sears TJ
    J Chem Phys; 2018 Oct; 149(15):154308. PubMed ID: 30342448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-Doppler resolution near-infrared spectroscopy at 1.28  μm with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method.
    Chen TL; Liu YW
    Opt Lett; 2017 Jul; 42(13):2447-2450. PubMed ID: 28957256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lamb-dip spectroscopy of the C-N stretching band of methylamine by using frequency-tunable microwave sidebands of CO
    Sun ZD; Qi SD; Lees RM; Xu LH
    Sci Rep; 2016 Sep; 6():34270. PubMed ID: 27685615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-running 9.1-microm distributed-feedback quantum cascade laser linewidth measurement by heterodyning with a C18O2 laser.
    Weidmann D; Joly L; Parpillon V; Courtois D; Bonetti Y; Aellen T; Beck M; Faist J; Hofstetter D
    Opt Lett; 2003 May; 28(9):704-6. PubMed ID: 12747713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Cascade Laser Measurements of Line Intensities, N2-, O2- and Ar- Collisional Broadening Coefficients of N2O in the ν3 Band Near 4.5 µm.
    Es-Sebbar ET; Deli M; Farooq A
    Appl Spectrosc; 2016 Jun; 70(6):972-82. PubMed ID: 27091906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-based dispersion Lamb-dip spectroscopy in a high finesse optical cavity.
    Bielska K; Cygan A; Konefał M; Kowzan G; Zaborowski M; Charczun D; Wójtewicz S; Wcisło P; Masłowski P; Ciuryło R; Lisak D
    Opt Express; 2021 Nov; 29(24):39449-39460. PubMed ID: 34809309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadrupole splittings in the near-infrared spectrum of
    Twagirayezu S; Hall GE; Sears TJ
    J Chem Phys; 2016 Oct; 145(14):144302. PubMed ID: 27782514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical frequency measurement of the H(12)C(14)N Lamb-dip-stabilized 1.5-microm diode laser.
    Awaji Y; Nakagawa K; Labachelerie M; Ohtsu M; Sasada H
    Opt Lett; 1995 Oct; 20(19):2024-6. PubMed ID: 19862238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-modulation spectroscopy of rubidium atoms with an AlGaAs diode laser.
    Nakanishi S; Ariki H; Itoh H; Kondo K
    Opt Lett; 1987 Nov; 12(11):864-6. PubMed ID: 19741897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.