These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19408297)

  • 1. Computational protein design as a tool for fold recognition.
    am Busch MS; Mignon D; Simonson T
    Proteins; 2009 Oct; 77(1):139-58. PubMed ID: 19408297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational protein design: validation and possible relevance as a tool for homology searching and fold recognition.
    Schmidt Am Busch M; Sedano A; Simonson T
    PLoS One; 2010 May; 5(5):e10410. PubMed ID: 20463972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational protein design: software implementation, parameter optimization, and performance of a simple model.
    Schmidt Am Busch M; Lopes A; Mignon D; Simonson T
    J Comput Chem; 2008 May; 29(7):1092-102. PubMed ID: 18069664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family.
    Brannetti B; Via A; Cestra G; Cesareni G; Helmer-Citterich M
    J Mol Biol; 2000 Apr; 298(2):313-28. PubMed ID: 10764600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational protein design with side-chain conformational entropy.
    Sciretti D; Bruscolini P; Pelizzola A; Pretti M; Jaramillo A
    Proteins; 2009 Jan; 74(1):176-91. PubMed ID: 18618711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased detection of structural templates using alignments of designed sequences.
    Larson SM; Garg A; Desjarlais JR; Pande VS
    Proteins; 2003 May; 51(3):390-6. PubMed ID: 12696050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FROST: a filter-based fold recognition method.
    Marin A; Pothier J; Zimmermann K; Gibrat JF
    Proteins; 2002 Dec; 49(4):493-509. PubMed ID: 12402359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Another look at the conditions for the extraction of protein knowledge-based potentials.
    Betancourt MR
    Proteins; 2009 Jul; 76(1):72-85. PubMed ID: 19089977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive combinatorial algorithm for multiple structural alignments: application to distantly related proteins.
    OchagavĂ­a ME; Wodak S
    Proteins; 2004 May; 55(2):436-54. PubMed ID: 15048834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-throughput model design of protein folding inhibitors.
    Broglia RA; Tiana G; Sutto L; Provasi D; Perelli V
    Proteins; 2007 May; 67(2):469-78. PubMed ID: 17295323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions.
    Fernandez-Ballester G; Beltrao P; Gonzalez JM; Song YH; Wilmanns M; Valencia A; Serrano L
    J Mol Biol; 2009 May; 388(4):902-16. PubMed ID: 19324052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filling-in void and sparse regions in protein sequence space by protein-like artificial sequences enables remarkable enhancement in remote homology detection capability.
    Mudgal R; Sowdhamini R; Chandra N; Srinivasan N; Sandhya S
    J Mol Biol; 2014 Feb; 426(4):962-79. PubMed ID: 24316367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can computationally designed protein sequences improve secondary structure prediction?
    Bondugula R; Wallqvist A; Lee MS
    Protein Eng Des Sel; 2011 May; 24(5):455-61. PubMed ID: 21282334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective scoring function for protein sequence design.
    Liang S; Grishin NV
    Proteins; 2004 Feb; 54(2):271-81. PubMed ID: 14696189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.
    Standley DM; Toh H; Nakamura H
    Proteins; 2008 Sep; 72(4):1333-51. PubMed ID: 18384072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A method for delineation of domains in proteins based on refolding free energy--application to continuous and discontinuous domains].
    Xie ZQ; Xu GJ
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Dec; 35(12):1090-8. PubMed ID: 14673500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.