These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19408315)

  • 1. Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes.
    Williams JA; Luke J; Langtry S; Anderson S; Hodgson CP; Carnes AE
    Biotechnol Bioeng; 2009 Aug; 103(6):1129-43. PubMed ID: 19408315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines.
    Chen W; Graham C; Ciccarelli RB
    J Ind Microbiol Biotechnol; 1997 Jan; 18(1):43-8. PubMed ID: 9079287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmid fermentation process for DNA immunization applications.
    Carnes AE; Williams JA
    Methods Mol Biol; 2014; 1143():197-217. PubMed ID: 24715290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fed-batch microbioreactor platform for scale down and analysis of a plasmid DNA production process.
    Bower DM; Lee KS; Ram RJ; Prather KL
    Biotechnol Bioeng; 2012 Aug; 109(8):1976-86. PubMed ID: 22422584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmid production and purification: An integrated experiment-based biochemistry and biotechnology laboratory course.
    Santos T; Pereira P; Queiroz JA; Cruz C; Sousa F
    Biochem Mol Biol Educ; 2019 Nov; 47(6):638-643. PubMed ID: 31390150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of growth conditions on plasmid DNA production.
    Silva F; Passarinha L; Sousa F; Queiroz JA; Domingues FC
    J Microbiol Biotechnol; 2009 Nov; 19(11):1408-14. PubMed ID: 19996695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale production of endotoxin-free plasmids for transient expression in mammalian cell culture.
    Rozkov A; Larsson B; Gillström S; Björnestedt R; Schmidt SR
    Biotechnol Bioeng; 2008 Feb; 99(3):557-66. PubMed ID: 17680665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid quantitation and monitoring of plasmid DNA using an ultrasensitive DNA-binding dye.
    Noites IS; O'Kennedy RD; Levy MS; Abidi N; Keshavarz-Moore E
    Biotechnol Bioeng; 1999; 66(3):195-201. PubMed ID: 10577474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducible Escherichia coli fermentation for increased plasmid DNA production.
    Carnes AE; Hodgson CP; Williams JA
    Biotechnol Appl Biochem; 2006 Nov; 45(Pt 3):155-66. PubMed ID: 16819941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmid DNA production combining antibiotic-free selection, inducible high yield fermentation, and novel autolytic purification.
    Carnes AE; Hodgson CP; Luke JM; Vincent JM; Williams JA
    Biotechnol Bioeng; 2009 Oct; 104(3):505-15. PubMed ID: 19557837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of bacterial strains and vectors for the production of plasmid DNA.
    Bower DM; Prather KL
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):805-13. PubMed ID: 19205691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmid DNA manufacturing technology.
    Carnes AE; Williams JA
    Recent Pat Biotechnol; 2007; 1(2):151-66. PubMed ID: 19075838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production.
    Williams JA; Carnes AE; Hodgson CP
    Biotechnol Adv; 2009; 27(4):353-70. PubMed ID: 19233255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of plasmids for gene therapy and DNA vaccination.
    Prazeres DM; Monteiro GA; Ferreira GN; Diogo MM; Ribeiro SC; Cabral JM
    Biotechnol Annu Rev; 2001; 7():1-30. PubMed ID: 11686041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mass balance study to assess the extent of contaminant removal achieved in the operations for the primary recovery of plasmid DNA from Escherichia coli cells.
    Ciccolini LA; Shamlou PA; Titchener-Hooker N
    Biotechnol Bioeng; 2002 Mar; 77(7):796-805. PubMed ID: 11835140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid DNA production with Escherichia coli GALG20, a pgi-gene knockout strain: fermentation strategies and impact on downstream processing.
    Gonçalves GA; Prather KL; Monteiro GA; Carnes AE; Prazeres DM
    J Biotechnol; 2014 Sep; 186():119-27. PubMed ID: 24995846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host strain influences on supercoiled plasmid DNA production in Escherichia coli: Implications for efficient design of large-scale processes.
    Yau SY; Keshavarz-Moore E; Ward J
    Biotechnol Bioeng; 2008 Oct; 101(3):529-44. PubMed ID: 18438778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fermentation strategy on the characteristics of plasmid DNA production.
    O'Kennedy RD; Ward JM; Keshavarz-Moore E
    Biotechnol Appl Biochem; 2003 Feb; 37(Pt 1):83-90. PubMed ID: 12578555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of IS1 transposition in plasmid amplification mutants of E. coli clones producing DNA vaccines.
    Prather KL; Edmonds MC; Herod JW
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):815-26. PubMed ID: 16941177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprocess engineering issues that would be faced in producing a DNA vaccine at up to 100 m3 fermentation scale for an influenza pandemic.
    Hoare M; Levy MS; Bracewell DG; Doig SD; Kong S; Titchener-Hooker N; Ward JM; Dunnill P
    Biotechnol Prog; 2005; 21(6):1577-92. PubMed ID: 16321039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.