BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

810 related articles for article (PubMed ID: 19408947)

  • 21. Surface plasmon resonance imaging of polymer microarrays to study protein-polymer interactions in high throughput.
    Hook AL; Thissen H; Voelcker NH
    Langmuir; 2009 Aug; 25(16):9173-81. PubMed ID: 19408906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parallel detection and quantification using nine immunoassays in a protein microarray for drug from serum samples.
    Du H; Yang W; Xing W; Su Y; Cheng J
    Biomed Microdevices; 2005 Jun; 7(2):143-6. PubMed ID: 15940429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new surface plasmon resonance sensor for high-throughput screening applications.
    Piliarik M; Vaisocherová H; Homola J
    Biosens Bioelectron; 2005 Apr; 20(10):2104-10. PubMed ID: 15741081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved continuous-flow print head for micro-array deposition.
    Eddings MA; Miles AR; Eckman JW; Kim J; Rich RL; Gale BK; Myszka DG
    Anal Biochem; 2008 Nov; 382(1):55-9. PubMed ID: 18703010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2011 Jan; 26(5):2053-9. PubMed ID: 20926281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of non-agglutination microarray blood grouping.
    Robb JS; Roy DJ; Ghazal P; Allan J; Petrik J
    Transfus Med; 2006 Apr; 16(2):119-29. PubMed ID: 16623918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy.
    Shumaker-Parry JS; Aebersold R; Campbell CT
    Anal Chem; 2004 Apr; 76(7):2071-82. PubMed ID: 15053673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wavelength-scanning surface plasmon resonance imaging for label-free multiplexed protein microarray assay.
    Otsuki S; Ishikawa M
    Biosens Bioelectron; 2010 Sep; 26(1):202-6. PubMed ID: 20638264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface plasmon resonance imaging for affinity-based biosensors.
    Scarano S; Mascini M; Turner AP; Minunni M
    Biosens Bioelectron; 2010 Jan; 25(5):957-66. PubMed ID: 19765967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrokinetic label-free screening chip: a marriage of multiplexing and high throughput analysis using surface plasmon resonance imaging.
    Krishnamoorthy G; Carlen ET; Bomer JG; Wijnperlé D; deBoer HL; van den Berg A; Schasfoort RB
    Lab Chip; 2010 Apr; 10(8):986-90. PubMed ID: 20358104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free detection with surface plasmon resonance imaging.
    Lausted C; Hu Z; Hood L
    Methods Mol Biol; 2011; 723():321-33. PubMed ID: 21370074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction and evaluation of an automated light directed protein-detecting microarray synthesizer.
    Marthandan N; Klyza S; Li S; Kwon YU; Kodadek T; Garner HR
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):20-7. PubMed ID: 18334452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics.
    Campbell CT; Kim G
    Biomaterials; 2007 May; 28(15):2380-92. PubMed ID: 17337300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regenerable tethered bilayer lipid membrane arrays for multiplexed label-free analysis of lipid-protein interactions on poly(dimethylsiloxane) microchips using SPR imaging.
    Taylor JD; Linman MJ; Wilkop T; Cheng Q
    Anal Chem; 2009 Feb; 81(3):1146-53. PubMed ID: 19178341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system.
    Kurita R; Yokota Y; Sato Y; Mizutani F; Niwa O
    Anal Chem; 2006 Aug; 78(15):5525-31. PubMed ID: 16878891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic biosensor based on competitive protein adsorption for thyroglobulin detection.
    Choi S; Chae J
    Biosens Bioelectron; 2009 Sep; 25(1):118-23. PubMed ID: 19577460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an open stand-alone platform for regenerable automated microarrays.
    Kloth K; Niessner R; Seidel M
    Biosens Bioelectron; 2009 Mar; 24(7):2106-12. PubMed ID: 19110413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging.
    Huang H; Chen Y
    Biosens Bioelectron; 2006 Dec; 22(5):644-8. PubMed ID: 16529921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of a novel micro-fluidic device to create arrays for multiplex analysis of large and small molecular weight compounds by surface plasmon resonance.
    Campbell K; McGrath T; Sjölander S; Hanson T; Tidare M; Jansson O; Moberg A; Mooney M; Elliott C; Buijs J
    Biosens Bioelectron; 2011 Feb; 26(6):3029-36. PubMed ID: 21185716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies.
    Boozer C; Kim G; Cong S; Guan H; Londergan T
    Curr Opin Biotechnol; 2006 Aug; 17(4):400-5. PubMed ID: 16837183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.