These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 19409064)
1. Balanced gradient boosting from imbalanced data for clinical outcome prediction. Teramoto R Stat Appl Genet Mol Biol; 2009; 8():Article20. PubMed ID: 19409064 [TBL] [Abstract][Full Text] [Related]
2. Learning to improve medical decision making from imbalanced data without a priori cost. Wan X; Liu J; Cheung WK; Tong T BMC Med Inform Decis Mak; 2014 Dec; 14():111. PubMed ID: 25480146 [TBL] [Abstract][Full Text] [Related]
3. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management. Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Burczynski ME; Twine NC; Dukart G; Marshall B; Hidalgo M; Stadler WM; Logan T; Dutcher J; Hudes G; Trepicchio WL; Strahs A; Immermann F; Slonim DK; Dorner AJ Clin Cancer Res; 2005 Feb; 11(3):1181-9. PubMed ID: 15709187 [TBL] [Abstract][Full Text] [Related]
5. Gene expression profiling of renal cell carcinoma and clinical implications. Rogers CG; Tan MH; Teh BT Urology; 2005 Feb; 65(2):231-7. PubMed ID: 15708028 [No Abstract] [Full Text] [Related]
6. [DNA and microRNA microarray technologies in diagnostics and prediction for patients with renal cell carcinoma]. Slabý O; Svoboda M; Michálek J; Vyzula R Klin Onkol; 2009; 22(5):202-9. PubMed ID: 19886357 [TBL] [Abstract][Full Text] [Related]
7. Tumor size improves the accuracy of TNM predictions in patients with renal cancer. Karakiewicz PI; Lewinshtein DJ; Chun FK; Briganti A; Guille F; Perrotte P; Lobel B; Ficarra V; Artibani W; Cindolo L; Tostain J; Abbou CC; Chopin D; De La Taille A; Patard JJ Eur Urol; 2006 Sep; 50(3):521-8; discussion 529. PubMed ID: 16530322 [TBL] [Abstract][Full Text] [Related]
8. Mixture classification model based on clinical markers for breast cancer prognosis. Zeng T; Liu J Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686 [TBL] [Abstract][Full Text] [Related]
10. A multi-class predictor based on a probabilistic model: application to gene expression profiling-based diagnosis of thyroid tumors. Yukinawa N; Oba S; Kato K; Taniguchi K; Iwao-Koizumi K; Tamaki Y; Noguchi S; Ishii S BMC Genomics; 2006 Jul; 7():190. PubMed ID: 16872506 [TBL] [Abstract][Full Text] [Related]
11. The role of molecular markers in the staging of renal cell carcinoma. Leppert JT; Pantuck AJ; Figlin RA; Belldegrun AS BJU Int; 2007 May; 99(5 Pt B):1208-11. PubMed ID: 17441912 [No Abstract] [Full Text] [Related]
12. CARSVM: a class association rule-based classification framework and its application to gene expression data. Kianmehr K; Alhajj R Artif Intell Med; 2008 Sep; 44(1):7-25. PubMed ID: 18586476 [TBL] [Abstract][Full Text] [Related]
15. Tissue array-based predictions of pathobiology, prognosis, and response to treatment for renal cell carcinoma therapy. Lam JS; Belldegrun AS; Figlin RA Clin Cancer Res; 2004 Sep; 10(18 Pt 2):6304S-9S. PubMed ID: 15448022 [TBL] [Abstract][Full Text] [Related]
16. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Chow TF; Youssef YM; Lianidou E; Romaschin AD; Honey RJ; Stewart R; Pace KT; Yousef GM Clin Biochem; 2010 Jan; 43(1-2):150-8. PubMed ID: 19646430 [TBL] [Abstract][Full Text] [Related]
17. Transfer Boosting With Synthetic Instances for Class Imbalanced Object Recognition. Zhang X; Zhuang Y; Wang W; Pedrycz W IEEE Trans Cybern; 2018 Jan; 48(1):357-370. PubMed ID: 28026795 [TBL] [Abstract][Full Text] [Related]
19. Prognostic models and algorithms in renal cell carcinoma. Lane BR; Kattan MW Urol Clin North Am; 2008 Nov; 35(4):613-25; vii. PubMed ID: 18992615 [TBL] [Abstract][Full Text] [Related]
20. A semi-supervised learning based method: Laplacian support vector machine used in diabetes disease diagnosis. Wu J; Diao YB; Li ML; Fang YP; Ma DC Interdiscip Sci; 2009 Jun; 1(2):151-5. PubMed ID: 20640829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]