These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19409448)

  • 1. Characterization of temperature dependent and substrate-binding cleft movements in Bacillus circulans family 11 xylanase: a molecular dynamics investigation.
    Vieira DS; Degrève L; Ward RJ
    Biochim Biophys Acta; 2009 Oct; 1790(10):1301-6. PubMed ID: 19409448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation analysis of a surface loop that controls active site access in the GH11 xylanase A from Bacillus subtilis.
    Vieira DS; Ward RJ
    J Mol Model; 2012 Apr; 18(4):1473-9. PubMed ID: 21785938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimodal substrate binding in the active site of the glycosidase BcX.
    Saberi M; Chikunova A; Ben Bdira F; Cramer-Blok A; Timmer M; Voskamp P; Ubbink M
    FEBS J; 2024 Oct; 291(19):4222-4239. PubMed ID: 39185686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase.
    Ludwiczek ML; Heller M; Kantner T; McIntosh LP
    J Mol Biol; 2007 Oct; 373(2):337-54. PubMed ID: 17822716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1).
    Murakami MT; Arni RK; Vieira DS; Degrève L; Ruller R; Ward RJ
    FEBS Lett; 2005 Nov; 579(28):6505-10. PubMed ID: 16289057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refolding the unfoldable: A systematic approach for renaturation of Bacillus circulans xylanase.
    Kötzler MP; McIntosh LP; Withers SG
    Protein Sci; 2017 Aug; 26(8):1555-1563. PubMed ID: 28466501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis.
    Joo JC; Pack SP; Kim YH; Yoo YJ
    J Biotechnol; 2011 Jan; 151(1):56-65. PubMed ID: 20959126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the Transglycosylation Reaction of a GH11 Xylanase by a Delicate Enhancement of its Thumb Flexibility.
    Marneth K; van den Elst H; Cramer-Blok A; Codee J; Overkleeft HS; Aerts JMFG; Ubbink M; Ben Bdira F
    Chembiochem; 2021 May; 22(10):1743-1749. PubMed ID: 33534182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the activity of Bacillus circulans xylanase by modulating the flexibility of the hinge region.
    Kazuyo F; Hong SY; Yeon YJ; Joo JC; Yoo YJ
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1181-90. PubMed ID: 24849049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational mutagenesis reveals the role of active-site tyrosine in stabilising a boat conformation for the substrate: QM/MM molecular dynamics studies of wild-type and mutant xylanases.
    Soliman ME; Ruggiero GD; Pernía JJ; Greig IR; Williams IH
    Org Biomol Chem; 2009 Feb; 7(3):460-8. PubMed ID: 19156310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.
    Mamo G; Thunnissen M; Hatti-Kaul R; Mattiasson B
    Biochimie; 2009 Sep; 91(9):1187-96. PubMed ID: 19567261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular docking of Bacillus pumilus xylanase and xylan substrate using computer modeling].
    Lin JX; Zhang LY; Zhang GY; Fang BS
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):715-8. PubMed ID: 17822050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues.
    Brüx C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D
    J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and enzymatic characterization of four thermostable fungal endo-1,4-β-xylanases.
    Sydenham R; Zheng Y; Riemens A; Tsang A; Powlowski J; Storms R
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3613-28. PubMed ID: 24085392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking.
    Jommuengbout P; Pinitglang S; Kyu KL; Ratanakhanokchai K
    Biosci Biotechnol Biochem; 2009 Apr; 73(4):833-9. PubMed ID: 19352037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of an N-terminal extension on the stability and activity of the GH11 xylanase from Thermobacillus xylanilyticus.
    Song L; Dumon C; Siguier B; André I; Eneyskaya E; Kulminskaya A; Bozonnet S; O'Donohue MJ
    J Biotechnol; 2014 Mar; 174():64-72. PubMed ID: 24440633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand Binding Enhances Millisecond Conformational Exchange in Xylanase B2 from Streptomyces lividans.
    Gagné D; Narayanan C; Nguyen-Thi N; Roux LD; Bernard DN; Brunzelle JS; Couture JF; Agarwal PK; Doucet N
    Biochemistry; 2016 Aug; 55(30):4184-96. PubMed ID: 27387012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic and activity-based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases.
    Pollet A; Vandermarliere E; Lammertyn J; Strelkov SV; Delcour JA; Courtin CM
    Proteins; 2009 Nov; 77(2):395-403. PubMed ID: 19422059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE
    J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.