These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Transient response of an electrorheological fluid under square-wave electric field excitation. Tian Y; Li C; Zhang M; Meng Y; Wen S J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589 [TBL] [Abstract][Full Text] [Related]
6. Correlation between Generated Shear Stress and Generated Permittivity for the Electrorheological Response of Colloidal Silica Suspensions. Saimoto Y; Satoh T; Konno M J Colloid Interface Sci; 1999 Nov; 219(1):135-143. PubMed ID: 10527579 [TBL] [Abstract][Full Text] [Related]
7. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline. Lu J; Zhao X J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406 [TBL] [Abstract][Full Text] [Related]
8. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields. Espin MJ; Delgado AV; Płocharski J Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029 [TBL] [Abstract][Full Text] [Related]
9. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid. Wu Q; Zhao By; Chen le S; Fang C; Hu Ka J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557 [TBL] [Abstract][Full Text] [Related]
10. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation. Cao JG; Huang JP; Zhou LW J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457 [TBL] [Abstract][Full Text] [Related]
11. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation. Ko YG; Shin SS; Choi US; Park YS; Woo JW ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802 [TBL] [Abstract][Full Text] [Related]
12. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength. Yin JB; Zhao XP J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474 [TBL] [Abstract][Full Text] [Related]
13. Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field. Ko YG; Lee HJ; Chun YJ; Choi US; Yoo KP ACS Appl Mater Interfaces; 2013 Feb; 5(3):1122-30. PubMed ID: 23336370 [TBL] [Abstract][Full Text] [Related]
16. Modeling and analysis of electrorheological suspensions in shear flow. Seo YP; Seo Y Langmuir; 2012 Feb; 28(6):3077-84. PubMed ID: 22233263 [TBL] [Abstract][Full Text] [Related]
17. Structural explanation of the rheology of a colloidal suspension under high dc electric fields. Espín MJ; Delgado AV; González-Caballero F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041503. PubMed ID: 16711805 [TBL] [Abstract][Full Text] [Related]
18. Simulation study on the trembling shear behavior of eletrorheological fluid. Yang F; Gong XL; Xuan SH; Jiang WQ; Jiang CX; Zhang Z Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011504. PubMed ID: 21867175 [TBL] [Abstract][Full Text] [Related]
19. Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties. Shin K; Kim D; Cho JC; Lim HS; Kim JW; Suh KD J Colloid Interface Sci; 2012 May; 374(1):18-24. PubMed ID: 22365839 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of potato starch and its electrorheological suspension. Sung JH; Park DP; Park BJ; Choi HJ; Jhon MS Biomacromolecules; 2005; 6(4):2182-8. PubMed ID: 16004461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]