BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 19409700)

  • 1. Using Large Eddy Simulation for understanding vented gas explosions in the presence of obstacles.
    Di Sarli V; Di Benedetto A; Russo G
    J Hazard Mater; 2009 Sep; 169(1-3):435-42. PubMed ID: 19409700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.
    Di Sarli V; Di Benedetto A; Russo G
    J Hazard Mater; 2010 Aug; 180(1-3):71-8. PubMed ID: 20471163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experiments on the effects of multiple obstacles in vented explosion chambers.
    Park DJ; Lee YS; Green AR
    J Hazard Mater; 2008 May; 153(1-2):340-50. PubMed ID: 17904284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe.
    Li G; Du Y; Wang S; Qi S; Zhang P; Chen W
    J Hazard Mater; 2017 Oct; 339():131-142. PubMed ID: 28641233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFD analysis of gas explosions vented through relief pipes.
    Ferrara G; Di Benedetto A; Salzano E; Russo G
    J Hazard Mater; 2006 Sep; 137(2):654-65. PubMed ID: 16675106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.
    Xiao H; Sun J; Chen P
    J Hazard Mater; 2014 Mar; 268():132-9. PubMed ID: 24486615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Venting of gas explosion through relief ducts: interaction between internal and external explosions.
    Ferrara G; Willacy SK; Phylaktou HN; Andrews GE; Di Benedetto A; Salzano E; Russo G
    J Hazard Mater; 2008 Jun; 155(1-2):358-68. PubMed ID: 18187258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large Eddy Simulation of Premixed CH
    Dai Q; Zhang S; Zhang S; Sun H; Huang M
    ACS Omega; 2021 Oct; 6(41):27140-27149. PubMed ID: 34693134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation.
    Nie B; He X; Zhang R; Chen W; Zhang J
    J Hazard Mater; 2011 Aug; 192(2):741-7. PubMed ID: 21704454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures.
    Van den Schoor F; Hermanns RT; van Oijen JA; Verplaetsen F; de Goey LP
    J Hazard Mater; 2008 Feb; 150(3):573-81. PubMed ID: 17560716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction for vented explosions in chambers with multiple obstacles.
    Park DJ; Lee YS; Green AR
    J Hazard Mater; 2008 Jun; 155(1-2):183-92. PubMed ID: 18162292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of the flammable plumes resulting from the convective dispersion of a fixed mass of the buoyant gaseous fuel, methane, into air.
    Fardisi S; Karim GA
    J Hazard Mater; 2009 Aug; 167(1-3):852-9. PubMed ID: 19237243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern formation of flames in radial microchannels with lean methane-air mixtures.
    Kumar S; Maruta K; Minaev S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016208. PubMed ID: 17358236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of debris with a solid obstacle: numerical analysis.
    Kosinska A
    J Hazard Mater; 2010 May; 177(1-3):602-12. PubMed ID: 20060218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixing in a square and a rectangular duct regarding selection of locations for extractive sampling of gaseous contaminants.
    Seo Y; McFarland AR; Ortiz CA; O'Neal DL
    Health Phys; 2006 Jul; 91(1):47-57. PubMed ID: 16775480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of flexible obstacles with different thicknesses on explosion propagation of premixed methane-air in a confined duct.
    Wang Z; Zhang Z; Yu J; Zhai Z
    Heliyon; 2023 Aug; 9(8):e18803. PubMed ID: 37609431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.
    Zhang Q; Li W; Lin DC; He N; Duan Y
    J Hazard Mater; 2011 Jan; 185(2-3):756-62. PubMed ID: 20965653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vented gaseous deflagrations modelling of hinged inertial vent covers.
    Molkov VV; Grigorash AV; Eber RM; Makarov DV
    J Hazard Mater; 2004 Dec; 116(1-2):1-10. PubMed ID: 15561358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inert nanoparticle suppression of gas explosion in the presence of obstacles.
    Wen X; Su T; Wang F; Deng H; Zheng K; Pei B
    RSC Adv; 2018 Nov; 8(68):39120-39125. PubMed ID: 35558314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of the consequences of primary dust explosions in interconnected vessels.
    Kosinski P; Hoffmann AC
    J Hazard Mater; 2006 Sep; 137(2):752-61. PubMed ID: 16730896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.