BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19410468)

  • 1. Progress in the use of gadolinium for NCT.
    Cerullo N; Bufalino D; Daquino G
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S157-60. PubMed ID: 19410468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculated DNA damage from gadolinium Auger electrons and relation to dose distributions in a head phantom.
    Goorley T; Zamenhof R; Nikjoo H
    Int J Radiat Biol; 2004; 80(11-12):933-40. PubMed ID: 15764405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.
    Wangerin K; Culbertson CN; Jevremovic T
    Health Phys; 2005 Aug; 89(2):135-44. PubMed ID: 16010124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary design of a Gd-NCT neutron beam based on compact D-T neutron source.
    Cerullo N; Esposito J; Bufalino D; Mastrullo A; Muzi L; Palmerini S
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):605-8. PubMed ID: 16604709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo modelling of the influence of boron microdistribution on BNCT microdosimetry.
    Hugtenburg RP; Baker AE; Green S
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S168-70. PubMed ID: 19394241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons.
    Marrale M; Basile S; Brai M; Longo A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S186-9. PubMed ID: 19380235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the dose enhancement of combined ¹⁰B + ¹⁵⁷Gd neutron capture therapy (NCT).
    Protti N; Geninatti-Crich S; Alberti D; Lanzardo S; Deagostino A; Toppino A; Aime S; Ballarini F; Bortolussi S; Bruschi P; Postuma I; Altieri S; Nikjoo H
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):369-73. PubMed ID: 26246584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of gadolinium concentration and cell oxygen levels on radiobiological characteristics of gadolinium neutron capture therapy technique in brain tumor treatment.
    Shamsabadi R; Baghani HR
    Radiol Phys Technol; 2024 Mar; 17(1):135-142. PubMed ID: 37989987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications.
    Deagostino A; Protti N; Alberti D; Boggio P; Bortolussi S; Altieri S; Crich SG
    Future Med Chem; 2016 May; 8(8):899-917. PubMed ID: 27195428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prompt gamma neutron activation analysis of 10B and Gd in biological samples at the MEPhI reactor.
    Khokhlov VF; Zaitsev KN; Beliayev VN; Kulakov VN; Lipengolts AA; Portnov AA
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S251-3. PubMed ID: 19375332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of dose rate scaling factors used in NCTPlan treatment planning code for the BNCT beam of THOR.
    Hsu FY; Liu MT; Tung CJ; Hsueh Liu YW; Chang CC; Liu HM; Chou FI
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S130-3. PubMed ID: 19375926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed Monte Carlo accounting of radiation transport in the brain during BNCT.
    Chin MP; Spyrou NM
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S164-7. PubMed ID: 19380231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evaluation of PEGylated-liposome encapsulating gadolinium complexes for gadolinium neutron capture therapy.
    Lee W; Jung KH; Park JA; Kim JY; Lee YJ; Chang Y; Yoo J
    Biochem Biophys Res Commun; 2021 Sep; 568():23-29. PubMed ID: 34174538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy.
    Enger SA; Rezaei A; Munck af Rosenschöld P; Lundqvist H
    Med Phys; 2006 Jan; 33(1):46-51. PubMed ID: 16485408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation therapy through activation of stable nuclides.
    Carlsson J; Forssell-Aronsson E; Glimelius B;
    Acta Oncol; 2002; 41(7-8):629-34. PubMed ID: 14651206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy.
    Fujimoto T; Ichikawa H; Akisue T; Fujita I; Kishimoto K; Hara H; Imabori M; Kawamitsu H; Sharma P; Brown SC; Moudgil BM; Fujii M; Yamamoto T; Kurosaka M; Fukumori Y
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S355-8. PubMed ID: 19386506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.
    Enger SA; Munck af Rosenschöld P; Rezaei A; Lundqvist H
    Med Phys; 2006 Feb; 33(2):337-41. PubMed ID: 16532938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?
    De Stasio G; Rajesh D; Casalbore P; Daniels MJ; Erhardt RJ; Frazer BH; Wiese LM; Richter KL; Sonderegger BR; Gilbert B; Schaub S; Cannara RJ; Crawford JF; Gilles MK; Tyliszczak T; Fowler JF; Larocca LM; Howard SP; Mercanti D; Mehta MP; Pallini R
    Neurol Res; 2005 Jun; 27(4):387-98. PubMed ID: 15949236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron and photon spectra for three gadolinium-based cancer therapy approaches.
    Goorley T; Nikjoo H
    Radiat Res; 2000 Nov; 154(5):556-63. PubMed ID: 11025652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gadolinium neutron capture therapy for brain tumors: a computer study.
    Masiakowski JT; Horton JL; Peters LJ
    Med Phys; 1992; 19(5):1277-84. PubMed ID: 1435610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.