These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19411167)

  • 41. The Oral Bioavailability of Trans-Resveratrol from a Grapevine-Shoot Extract in Healthy Humans is Significantly Increased by Micellar Solubilization.
    Calvo-Castro LA; Schiborr C; David F; Ehrt H; Voggel J; Sus N; Behnam D; Bosy-Westphal A; Frank J
    Mol Nutr Food Res; 2018 May; 62(9):e1701057. PubMed ID: 29534330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bile salts as atypical surfactants and solubilizers.
    Mukerjee P; Moroi Y; Murata M; Yang AY
    Hepatology; 1984; 4(5 Suppl):61S-65S. PubMed ID: 6479886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The behavior and solubility of monoglycerides in dilute, micellar bile-salt solution.
    HOFMANN AF
    Biochim Biophys Acta; 1963 Jun; 70():306-16. PubMed ID: 13963971
    [No Abstract]   [Full Text] [Related]  

  • 44. Lytic effects of mixed micelles of fatty acids and bile acids.
    Lapré JA; Termont DS; Groen AK; Van der Meer R
    Am J Physiol; 1992 Sep; 263(3 Pt 1):G333-7. PubMed ID: 1415545
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micellar aggregation and membrane partitioning of bile salts, fatty acids, sodium dodecyl sulfate, and sugar-conjugated fatty acids: correlation with hemolytic potency and implications for drug delivery.
    Ross BP; Braddy AC; McGeary RP; Blanchfield JT; Prokai L; Toth I
    Mol Pharm; 2004; 1(3):233-45. PubMed ID: 15981926
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of bile salt critical micellization concentration on the road to drug discovery.
    Natalini B; Sardella R; Gioiello A; Ianni F; Di Michele A; Marinozzi M
    J Pharm Biomed Anal; 2014 Jan; 87():62-81. PubMed ID: 23870107
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction between dietary bioactive peptides of short length and bile salts in submicellar or micellar state.
    Guerin J; Kriznik A; Ramalanjaona N; Le Roux Y; Girardet JM
    Food Chem; 2016 Oct; 209():114-22. PubMed ID: 27173542
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Correlation between CMC and chromatographic index: simple and effective evaluation of the hydrophobic/hydrophilic balance of bile acids.
    Natalini B; Sardella R; Camaioni E; Gioiello A; Pellicciari R
    Anal Bioanal Chem; 2007 Aug; 388(8):1681-8. PubMed ID: 17572887
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bile salt micellar electrokinetic chromatography of bilirubin and related compounds.
    Nittler MP; Desai RA; Salikof DA; Kurtin WE; Bushey MM
    J Chromatogr A; 1997 Aug; 779(1-2):205-14. PubMed ID: 9335123
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential effects of calcium ions and calcium phosphate on cytotoxicity of bile acids.
    Van der Meer R; Termont DS; De Vries HT
    Am J Physiol; 1991 Jan; 260(1 Pt 1):G142-7. PubMed ID: 1987802
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermodynamic interference with bile acid demicelleization reduces systemic entry and injury during cholestasis.
    de Oliveira C; Khatua B; El-Kurdi B; Patel K; Mishra V; Navina S; Grim BJ; Gupta S; Belohlavek M; Cherry B; Yarger J; Green MD; Singh VP
    Sci Rep; 2020 May; 10(1):8462. PubMed ID: 32439972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Premicelle formation of double-chain surfactants and bile salts in the neighborhood of the CMC region: application of a differential conductivity technique to the determination of micellization parameters.
    Manabe M; Kawamura H; Kameyama K
    J Oleo Sci; 2011; 60(10):515-25. PubMed ID: 21937851
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast chromatographic determination of the bile salt critical micellar concentration.
    Natalini B; Sardella R; Gioiello A; Rosatelli E; Ianni F; Camaioni E; Pellicciari R
    Anal Bioanal Chem; 2011 Jul; 401(1):267-74. PubMed ID: 21573726
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Haemolytic activity of formyl- and acetyl-derivatives of bile acids and their gramine salts.
    Kozanecka-Okupnik W; Jasiewicz B; Pospieszny T; Matuszak M; Mrówczyńska L
    Steroids; 2017 Oct; 126():50-56. PubMed ID: 28711706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Absorption-Enhancing Effects of Bile Salts.
    Moghimipour E; Ameri A; Handali S
    Molecules; 2015 Aug; 20(8):14451-73. PubMed ID: 26266402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem.
    Hofmann AF; Roda A
    J Lipid Res; 1984 Dec; 25(13):1477-89. PubMed ID: 6397555
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conductometric and Fluorescence Probe Analysis to Investigate the Interaction between Bioactive Peptide and Bile Salts: A Micellar State Study.
    Kumari S; Chauhan S; Umar A; Fouad H; Akhtar MS
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of bile salts and lipids on the physicochemical behavior of gemfibrozil.
    Luner PE; Babu SR; Radebaugh GW
    Pharm Res; 1994 Dec; 11(12):1755-60. PubMed ID: 7899240
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of conjugated bile acids/azastilbenes as potential antioxidant and photoprotective agents.
    dos Santos JA; Polonini HC; Suzuki ÉY; Raposo NR; da Silva AD
    Steroids; 2015 Jun; 98():114-21. PubMed ID: 25814069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis.
    Tiecco M; Corte L; Roscini L; Colabella C; Germani R; Cardinali G
    Chem Biol Interact; 2014 Jul; 218():20-7. PubMed ID: 24814799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.