These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19411192)

  • 1. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone.
    Freguia S; Masuda M; Tsujimura S; Kano K
    Bioelectrochemistry; 2009 Sep; 76(1-2):14-8. PubMed ID: 19411192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose metabolism of lactic acid bacteria changed by quinone-mediated extracellular electron transfer.
    Yamazaki S; Kaneko T; Taketomo N; Kano K; Ikeda T
    Biosci Biotechnol Biochem; 2002 Oct; 66(10):2100-6. PubMed ID: 12450120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.
    Masuda M; Freguia S; Wang YF; Tsujimura S; Kano K
    Bioelectrochemistry; 2010 Jun; 78(2):173-5. PubMed ID: 19717350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells.
    Xia X; Cao XX; Liang P; Huang X; Yang SP; Zhao GG
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):383-90. PubMed ID: 20419297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells.
    Liu M; Yuan Y; Zhang LX; Zhuang L; Zhou SG; Ni JR
    Bioresour Technol; 2010 Mar; 101(6):1807-11. PubMed ID: 19879132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7].
    Luo HP; Liu GL; Zhang RD; Cao LX
    Huan Jing Ke Xue; 2009 Jul; 30(7):2118-23. PubMed ID: 19775018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.
    Li X; Liu L; Liu T; Yuan T; Zhang W; Li F; Zhou S; Li Y
    Chemosphere; 2013 Jun; 92(2):218-24. PubMed ID: 23461838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor.
    Rosenbaum MA; Bar HY; Beg QK; Segrè D; Booth J; Cotta MA; Angenent LT
    Bioresour Technol; 2011 Feb; 102(3):2623-8. PubMed ID: 21036604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electricity generation and quinoline degradation of pure strains and mixed strains in the microbial fuel cell].
    Chen SS; Zhang CP; Liu GL; Zhang RD; Li MC; Quan XC
    Huan Jing Ke Xue; 2010 Sep; 31(9):2148-54. PubMed ID: 21072938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed circuitry operation influence on microbial electrofermentation: Proton/electron effluxes on electro-fuels productivity.
    Nikhil GN; Venkata Subhash G; Yeruva DK; Venkata Mohan S
    Bioresour Technol; 2015 Nov; 195():37-45. PubMed ID: 26189780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer.
    Pham TH; Boon N; Aelterman P; Clauwaert P; De Schamphelaire L; Vanhaecke L; De Maeyer K; Höfte M; Verstraete W; Rabaey K
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1119-29. PubMed ID: 17968538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The utility of Shewanella japonica for microbial fuel cells.
    Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH
    Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell.
    Chung K; Okabe S
    Biotechnol Bioeng; 2009 Dec; 104(5):901-10. PubMed ID: 19575435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Escherichia coli and anaerobic consortia derived from compost as anodic biocatalysts in a glycerol-oxidizing microbial fuel cell.
    Reiche A; Kirkwood KM
    Bioresour Technol; 2012 Nov; 123():318-23. PubMed ID: 22940336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells.
    Zhang E; Cai Y; Luo Y; Piao Z
    Can J Microbiol; 2014 Nov; 60(11):753-9. PubMed ID: 25345758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microbe electric: conversion of organic matter to electricity.
    Lovley DR
    Curr Opin Biotechnol; 2008 Dec; 19(6):564-71. PubMed ID: 19000760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of menaquinones by lactic acid bacteria.
    Morishita T; Tamura N; Makino T; Kudo S
    J Dairy Sci; 1999 Sep; 82(9):1897-903. PubMed ID: 10509247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.