These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19411192)

  • 21. Microbial electricity generation of diversified carbonaceous electrodes under variable mediators.
    Park IH; Gnana Kumar G; Kim AR; Kim P; Suk Nahm K
    Bioelectrochemistry; 2011 Feb; 80(2):99-104. PubMed ID: 20655812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing electron transfer with Escherichia coli: a method to examine exoelectronics in microbial fuel cell type systems.
    Sugnaux M; Mermoud S; da Costa AF; Happe M; Fischer F
    Bioresour Technol; 2013 Nov; 148():567-73. PubMed ID: 24080296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.
    Chaudhuri SK; Lovley DR
    Nat Biotechnol; 2003 Oct; 21(10):1229-32. PubMed ID: 12960964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells.
    Ramasamy RP; Gadhamshetty V; Nadeau LJ; Johnson GR
    Biotechnol Bioeng; 2009 Dec; 104(5):882-91. PubMed ID: 19585525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria.
    Torres CI; Kato Marcus A; Rittmann BE
    Biotechnol Bioeng; 2008 Aug; 100(5):872-81. PubMed ID: 18551519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface display of redox enzymes in microbial fuel cells.
    Fishilevich S; Amir L; Fridman Y; Aharoni A; Alfonta L
    J Am Chem Soc; 2009 Sep; 131(34):12052-3. PubMed ID: 19663383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency.
    Schröder U
    Phys Chem Chem Phys; 2007 Jun; 9(21):2619-29. PubMed ID: 17627307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Sustainable electricity generation in microbial fuel cells using Fe(III)-EDTA as cathodic electron shuttle].
    Deng LF; Zhou SG; Zhang JT; Zhuang L; Lu N; Zha'g LX
    Huan Jing Ke Xue; 2009 Jul; 30(7):2142-7. PubMed ID: 19775022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of flavin electron shuttles in microbial fuel cells current production.
    Velasquez-Orta SB; Head IM; Curtis TP; Scott K; Lloyd JR; von Canstein H
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1373-81. PubMed ID: 19697021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells.
    Zhao CE; Wu J; Kjelleberg S; Loo JS; Zhang Q
    Small; 2015 Jul; 11(28):3440-3. PubMed ID: 25828694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells.
    Huang L; Regan JM; Quan X
    Bioresour Technol; 2011 Jan; 102(1):316-23. PubMed ID: 20634062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1.
    Sun M; Zhang F; Tong ZH; Sheng GP; Chen YZ; Zhao Y; Chen YP; Zhou SY; Liu G; Tian YC; Yu HQ
    Biosens Bioelectron; 2010 Oct; 26(2):338-43. PubMed ID: 20801013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of nitrogen addition on the performance of microbial fuel cell anodes.
    Saito T; Mehanna M; Wang X; Cusick RD; Feng Y; Hickner MA; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):395-8. PubMed ID: 20889061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.
    Jayasinghe N; Franks A; Nevin KP; Mahadevan R
    Biotechnol J; 2014 Oct; 9(10):1350-61. PubMed ID: 25113946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of terminal electron acceptor availability to the anodic oxidation on the electrogenic activity of microbial fuel cell (MFC).
    Srikanth S; Venkata Mohan S
    Bioresour Technol; 2012 Nov; 123():480-7. PubMed ID: 22940358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.
    Sulonen ML; Kokko ME; Lakaniemi AM; Puhakka JA
    J Hazard Mater; 2015 Mar; 284():182-9. PubMed ID: 25463232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responses from freshwater sediment during electricity generation using microbial fuel cells.
    Hong SW; Chang IS; Choi YS; Kim BH; Chung TH
    Bioprocess Biosyst Eng; 2009 Apr; 32(3):389-95. PubMed ID: 18751733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bug juice: harvesting electricity with microorganisms.
    Lovley DR
    Nat Rev Microbiol; 2006 Jul; 4(7):497-508. PubMed ID: 16778836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell.
    Kim BH; Park HS; Kim HJ; Kim GT; Chang IS; Lee J; Phung NT
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):672-81. PubMed ID: 12908088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.