BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 19411425)

  • 1. Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients.
    Englert DL; Manson MD; Jayaraman A
    Appl Environ Microbiol; 2009 Jul; 75(13):4557-64. PubMed ID: 19411425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic device for quantifying bacterial chemotaxis in stable concentration gradients.
    Englert DL; Manson MD; Jayaraman A
    J Vis Exp; 2010 Apr; (38):. PubMed ID: 20404797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients.
    Sule N; Penarete-Acosta D; Englert DL; Jayaraman A
    Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of bacterial chemotaxis in flow-based microfluidic devices.
    Englert DL; Manson MD; Jayaraman A
    Nat Protoc; 2010 May; 5(5):864-72. PubMed ID: 20431532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing Chemoattraction of Planktonic Cells to a Biofilm.
    Jani S
    Methods Mol Biol; 2018; 1729():61-69. PubMed ID: 29429082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial chemotaxis on SlipChip.
    Shen C; Xu P; Huang Z; Cai D; Liu SJ; Du W
    Lab Chip; 2014 Aug; 14(16):3074-80. PubMed ID: 24968180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed microfluidic screening of bacterial chemotaxis.
    Stehnach MR; Henshaw RJ; Floge SA; Guasto JS
    Elife; 2023 Jul; 12():. PubMed ID: 37486823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic techniques for the analysis of bacterial chemotaxis.
    Englert DL; Jayaraman A; Manson MD
    Methods Mol Biol; 2009; 571():1-23. PubMed ID: 19763956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stationary-phase quorum-sensing signals affect autoinducer-2 and gene expression in Escherichia coli.
    Ren D; Bedzyk LA; Ye RW; Thomas SM; Wood TK
    Appl Environ Microbiol; 2004 Apr; 70(4):2038-43. PubMed ID: 15066794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biphasic chemotaxis of
    Yang J; Chawla R; Rhee KY; Gupta R; Manson MD; Jayaraman A; Lele PP
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6114-6120. PubMed ID: 32123098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemorepulsion from the Quorum Signal Autoinducer-2 Promotes Helicobacter pylori Biofilm Dispersal.
    Anderson JK; Huang JY; Wreden C; Sweeney EG; Goers J; Remington SJ; Guillemin K
    mBio; 2015 Jul; 6(4):e00379. PubMed ID: 26152582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indole cell signaling occurs primarily at low temperatures in Escherichia coli.
    Lee J; Zhang XS; Hegde M; Bentley WE; Jayaraman A; Wood TK
    ISME J; 2008 Oct; 2(10):1007-23. PubMed ID: 18528414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model for Escherichia coli chemotaxis to competing stimuli.
    Middlebrooks SA; Zhao X; Ford RM; Cummings PT
    Biotechnol Bioeng; 2021 Dec; 118(12):4678-4686. PubMed ID: 34463958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli.
    Ren D; Bedzyk LA; Ye RW; Thomas SM; Wood TK
    Biotechnol Bioeng; 2004 Dec; 88(5):630-42. PubMed ID: 15470704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays.
    Kim M; Kim T
    Anal Chem; 2010 Nov; 82(22):9401-9. PubMed ID: 20979359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources.
    Kim M; Kim SH; Lee SK; Kim T
    Analyst; 2011 Aug; 136(16):3238-43. PubMed ID: 21716994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel reporter for identification of interference with acyl homoserine lactone and autoinducer-2 quorum sensing.
    Weiland-Bräuer N; Pinnow N; Schmitz RA
    Appl Environ Microbiol; 2015 Feb; 81(4):1477-89. PubMed ID: 25527543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli chemotaxis to competing stimuli in a microfluidic device with a constant gradient.
    Zhao X; Ford RM
    Biotechnol Bioeng; 2022 Sep; 119(9):2564-2573. PubMed ID: 35716141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.