These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19411607)

  • 1. Recovering genome rearrangements in the mammalian phylogeny.
    Zhao H; Bourque G
    Genome Res; 2009 May; 19(5):934-42. PubMed ID: 19411607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Algorithm for Identifying Genome Rearrangements in the Mammalian Evolution.
    Wang J; Cui B; Zhao Y; Guo M
    Front Genet; 2019; 10():1020. PubMed ID: 31737036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution.
    Kemkemer C; Kohn M; Cooper DN; Froenicke L; Högel J; Hameister H; Kehrer-Sawatzki H
    BMC Evol Biol; 2009 Apr; 9():84. PubMed ID: 19393055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements.
    Armengol L; Pujana MA; Cheung J; Scherer SW; Estivill X
    Hum Mol Genet; 2003 Sep; 12(17):2201-8. PubMed ID: 12915466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise detection of rearrangement breakpoints in mammalian chromosomes.
    Lemaitre C; Tannier E; Gautier C; Sagot MF
    BMC Bioinformatics; 2008 Jun; 9():286. PubMed ID: 18564416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing contiguous regions of an ancestral genome.
    Ma J; Zhang L; Suh BB; Raney BJ; Burhans RC; Kent WJ; Blanchette M; Haussler D; Miller W
    Genome Res; 2006 Dec; 16(12):1557-65. PubMed ID: 16983148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing the genomic architecture of mammalian ancestors using multispecies comparative maps.
    Murphy WJ; Bourque G; Tesler G; Pevzner P; O'Brien SJ
    Hum Genomics; 2003 Nov; 1(1):30-40. PubMed ID: 15601531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the ancestral mammalian karyotype and syntenic regions.
    Damas J; Corbo M; Kim J; Turner-Maier J; Farré M; Larkin DM; Ryder OA; Steiner C; Houck ML; Hall S; Shiue L; Thomas S; Swale T; Daly M; Korlach J; Uliano-Silva M; Mazzoni CJ; Birren BW; Genereux DP; Johnson J; Lindblad-Toh K; Karlsson EK; Nweeia MT; Johnson RN; ; Lewin HA
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2209139119. PubMed ID: 36161960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes.
    Pevzner P; Tesler G
    Genome Res; 2003 Jan; 13(1):37-45. PubMed ID: 12529304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity analysis for reversal distance and breakpoint reuse in genome rearrangements.
    Sinha AU; Meller J
    Pac Symp Biocomput; 2008; ():37-48. PubMed ID: 18229675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes.
    Bhutkar A; Schaeffer SW; Russo SM; Xu M; Smith TF; Gelbart WM
    Genetics; 2008 Jul; 179(3):1657-80. PubMed ID: 18622036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hotspots of mammalian chromosomal evolution.
    Bailey JA; Baertsch R; Kent WJ; Haussler D; Eichler EE
    Genome Biol; 2004; 5(4):R23. PubMed ID: 15059256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints.
    Scardino R; Milioto V; Proskuryakova AA; Serdyukova NA; Perelman PL; Dumas F
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32244767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GRSR: a tool for deriving genome rearrangement scenarios from multiple unichromosomal genome sequences.
    Wang D; Wang L
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):291. PubMed ID: 30367596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Murine segmental duplications are hot spots for chromosome and gene evolution.
    Armengol L; Marquès-Bonet T; Cheung J; Khaja R; González JR; Scherer SW; Navarro A; Estivill X
    Genomics; 2005 Dec; 86(6):692-700. PubMed ID: 16256303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of chromosomal rearrangement during primate evolution.
    Kehrer-Sawatzki H; Cooper DN
    Chromosome Res; 2008; 16(1):41-56. PubMed ID: 18293104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus.
    Vakirlis N; Sarilar V; Drillon G; Fleiss A; Agier N; Meyniel JP; Blanpain L; Carbone A; Devillers H; Dubois K; Gillet-Markowska A; Graziani S; Huu-Vang N; Poirel M; Reisser C; Schott J; Schacherer J; Lafontaine I; Llorente B; Neuvéglise C; Fischer G
    Genome Res; 2016 Jul; 26(7):918-32. PubMed ID: 27247244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TruEst: a better estimator of evolutionary distance under the INFER model.
    Zabelkin A; Avdeyev P; Alexeev N
    J Math Biol; 2023 Jul; 87(2):25. PubMed ID: 37423919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes.
    Bourque G; Pevzner PA; Tesler G
    Genome Res; 2004 Apr; 14(4):507-16. PubMed ID: 15059991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of human chromosome 3 during primate evolution.
    Tsend-Ayush E; Grützner F; Yue Y; Grossmann B; Hänsel U; Sudbrak R; Haaf T
    Genomics; 2004 Feb; 83(2):193-202. PubMed ID: 14706448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.