BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 19411855)

  • 1. Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong?
    Gems D; Doonan R
    Cell Cycle; 2009 Jun; 8(11):1681-7. PubMed ID: 19411855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation.
    Gaidamakova EK; Sharma A; Matrosova VY; Grichenko O; Volpe RP; Tkavc R; Conze IH; Klimenkova P; Balygina I; Horne WH; Gostinčar C; Chen X; Makarova KS; Shuryak I; Srinivasan C; Jackson-Thompson B; Hoffman BM; Daly MJ
    mBio; 2022 Feb; 13(1):e0339421. PubMed ID: 35012337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of life-span with superoxide dismutase/catalase mimetics.
    Melov S; Ravenscroft J; Malik S; Gill MS; Walker DW; Clayton PE; Wallace DC; Malfroy B; Doctrow SR; Lithgow GJ
    Science; 2000 Sep; 289(5484):1567-9. PubMed ID: 10968795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model.
    Fang Z; Chen Y; Wang G; Feng T; Shen M; Xiao B; Gu J; Wang W; Li J; Zhang Y
    Food Funct; 2019 Sep; 10(9):5531-5543. PubMed ID: 31418439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of in vivo oxidative damage in Caenorhabditis elegans during aging by endogenous F3-isoprostane measurement.
    Labuschagne CF; Stigter EC; Hendriks MM; Berger R; Rokach J; Korswagen HC; Brenkman AB
    Aging Cell; 2013 Apr; 12(2):214-23. PubMed ID: 23279719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple biological defects caused by calycosin-7-O-β-d-glucoside in the nematode Caenorhabditis elegans are associated with the activation of oxidative damage.
    Zhang J; Xue X; Yang Y; Ma W; Han Y; Qin X
    J Appl Toxicol; 2018 Jun; 38(6):801-809. PubMed ID: 29350786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oenothein B boosts antioxidant capacity and supports metabolic pathways that regulate antioxidant defense in
    Li W; Li Z; Peng MJ; Zhang X; Chen Y; Yang YY; Zhai XX; Liu G; Cao Y
    Food Funct; 2020 Oct; 11(10):9157-9167. PubMed ID: 33026384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative status of stressed Caenorhabditis elegans treated with epicatechin.
    González-Manzano S; González-Paramás AM; Delgado L; Patianna S; Surco-Laos F; Dueñas M; Santos-Buelga C
    J Agric Food Chem; 2012 Sep; 60(36):8911-6. PubMed ID: 22651237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Anthocyanin-Rich Extract of Acai (Euterpe precatoria Mart.) Increases Stress Resistance and Retards Aging-Related Markers in Caenorhabditis elegans.
    Peixoto H; Roxo M; Krstin S; Röhrig T; Richling E; Wink M
    J Agric Food Chem; 2016 Feb; 64(6):1283-90. PubMed ID: 26809379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutics against mitochondrial oxidative stress in animal models of aging.
    Melov S
    Ann N Y Acad Sci; 2002 Apr; 959():330-40. PubMed ID: 11976207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soy sauce increased the oxidative stress tolerance of nematode via p38 MAPK pathway.
    Sugawara T; Saraprug D; Sakamoto K
    Biosci Biotechnol Biochem; 2019 Apr; 83(4):709-716. PubMed ID: 30626262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ROS in aging Caenorhabditis elegans: damage or signaling?
    Back P; Braeckman BP; Matthijssens F
    Oxid Med Cell Longev; 2012; 2012():608478. PubMed ID: 22966416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics.
    Sampayo JN; Olsen A; Lithgow GJ
    Aging Cell; 2003 Dec; 2(6):319-26. PubMed ID: 14677634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rosmarinic acid improved antioxidant properties and healthspan via the IIS and MAPK pathways in Caenorhabditis elegans.
    Lin C; Xiao J; Xi Y; Zhang X; Zhong Q; Zheng H; Cao Y; Chen Y
    Biofactors; 2019 Sep; 45(5):774-787. PubMed ID: 31206890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repression of the mitochondrial peroxiredoxin antioxidant system does not shorten life span but causes reduced fitness in Caenorhabditis elegans.
    Ranjan M; Gruber J; Ng LF; Halliwell B
    Free Radic Biol Med; 2013 Oct; 63():381-9. PubMed ID: 23722165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the rate-of-living/oxidative damage theory of aging in the nematode model Caenorhabditis elegans.
    Brys K; Vanfleteren JR; Braeckman BP
    Exp Gerontol; 2007 Sep; 42(9):845-51. PubMed ID: 17379464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electrotactic exercise and antioxidant EUK-134 on oxidative stress relief in Caenorhabditis elegans.
    Pham TTH; Huang WY; Chen CS; Chiu WT; Chuang HS
    PLoS One; 2021; 16(1):e0245474. PubMed ID: 33471830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monascin from Monascus-Fermented Products Reduces Oxidative Stress and Amyloid-β Toxicity via DAF-16/FOXO in Caenorhabditis elegans.
    Shi YC; Pan TM; Liao VH
    J Agric Food Chem; 2016 Sep; 64(38):7114-20. PubMed ID: 27554775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans.
    Vanfleteren JR; De Vreese A
    FASEB J; 1995 Oct; 9(13):1355-61. PubMed ID: 7557026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans.
    Shi YC; Liao VH; Pan TM
    Free Radic Biol Med; 2012 Jan; 52(1):109-17. PubMed ID: 22041455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.