These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19412218)

  • 1. Aberrations of anamorphic optical systems. I: The first-order foundation and method for deriving the anamorphic primary aberration coefficients.
    Yuan S; Sasian J
    Appl Opt; 2009 May; 48(13):2574-84. PubMed ID: 19412218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberrations of anamorphic optical systems. II. Primary aberration theory for cylindrical anamorphic systems.
    Yuan S; Sasian J
    Appl Opt; 2009 May; 48(15):2836-41. PubMed ID: 19458731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrations of anamorphic optical systems III: the primary aberration theory for toroidal anamorphic systems.
    Yuan S; Sasian J
    Appl Opt; 2010 Dec; 49(35):6802-7. PubMed ID: 21151238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic aberration coefficients for plane-symmetric optical systems consisting of spherical surfaces.
    Liu Y; Steidle J; Rolland JP
    J Opt Soc Am A Opt Image Sci Vis; 2023 Feb; 40(2):378-387. PubMed ID: 36821207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seidel aberration coefficients: an alternative computational method.
    Lin PD; Johnson RB
    Opt Express; 2019 Jul; 27(14):19712-19725. PubMed ID: 31503727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry.
    Thompson KP; Schmid T; Cakmakci O; Rolland JP
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jun; 26(6):1503-17. PubMed ID: 19488190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental ray aberration analysis: extension of ray matrix analysis to the third-order region using a four-element fundamental ray vector.
    Mori K; Hayasaki Y; Araki K
    Appl Opt; 2020 May; 59(14):4466-4477. PubMed ID: 32400427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin lens aberrations for anamorphic lenses.
    Zhang J; Chen X; Liu H; Li F; Sun X
    Appl Opt; 2019 Jan; 58(1):182-188. PubMed ID: 30645528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplified analytical method for an anamorphic refractive shaping system of laser beams with a large aspect ratio.
    Tan QW; Guo YD; Li Y; Zhang L; Shao CF; Cui DF; Peng QJ
    Appl Opt; 2021 Nov; 60(31):9672-9680. PubMed ID: 34807150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberration theory of plane-symmetric grating systems.
    Lu LJ
    J Synchrotron Radiat; 2008 Jul; 15(Pt 4):399-410. PubMed ID: 18552434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization aberrations. 1. Rotationally symmetric optical systems.
    McGuire JP; Chipman RA
    Appl Opt; 1994 Aug; 33(22):5080-100. PubMed ID: 20935891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spherical aberration of an optical system and its influence on depth of focus.
    Mikš A; Pokorný P
    Appl Opt; 2017 Jun; 56(17):5099-5105. PubMed ID: 29047662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lens design for parallel cylindrical anamorphic attachments with finite object distance.
    Chen X; Zhang J
    Appl Opt; 2022 May; 61(15):4610-4619. PubMed ID: 36256304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
    Mahajan VN
    Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.
    Mahajan VN
    Appl Opt; 2010 Dec; 49(36):6924-9. PubMed ID: 21173827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paraxial lens design of double-telecentric anamorphic zoom lenses with variable magnifications or fixed conjugate.
    Zhang J; Wang X; Chen X; Li F; Liu H; Cui H; Sun X
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):1977-1990. PubMed ID: 31873368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing aberration coefficients for plane-symmetric reflective systems: a Lie algebraic approach.
    Barion A; Anthonissen MJH; Ten Thije Boonkkamp JHM; IJzerman WL
    J Opt Soc Am A Opt Image Sci Vis; 2023 Jun; 40(6):1215-1224. PubMed ID: 37706775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Third-order aberration of soft X-ray optical systems with orthogonal and coplanar arrangement of the main planes of elements.
    Cao Y; Shen Z; Xie H
    J Synchrotron Radiat; 2020 Nov; 27(Pt 6):1477-1484. PubMed ID: 33147172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parabasal formulas and their applications.
    Cho S
    J Opt Soc Am A Opt Image Sci Vis; 2017 Sep; 34(9):1550-1560. PubMed ID: 29036158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sixth-order wave aberration theory of ultrawide-angle optical systems.
    Lu L; Cao Y
    Appl Opt; 2017 Oct; 56(30):8570-8583. PubMed ID: 29091641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.