These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19412225)

  • 41. [Effects of single mode's high-order aberrations on visual acuity corrected using adaptive optics technique].
    Li SM; Xiong Y; Li J; Zhou YH; Dai Y; Zhang YD; Jiang WH; Wang NL
    Zhonghua Yan Ke Za Zhi; 2011 Oct; 47(10):934-7. PubMed ID: 22321505
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Active compensation for optimal RMS wavefront error in perturbed off-axis optical telescopes using nodal aberration theory.
    Wen M; Han C; Ma H
    Appl Opt; 2021 Feb; 60(6):1790-1800. PubMed ID: 33690520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Practical technique for balancing the optical aberrations among conceptual thin-lens components of optical zoom lenses.
    Chen C
    Appl Opt; 2022 Nov; 61(31):9225-9232. PubMed ID: 36607057
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Finite conjugate spherical aberration compensation in high numerical-aperture optical disc readout.
    Stallinga S
    Appl Opt; 2005 Dec; 44(34):7307-12. PubMed ID: 16353800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compact description of substrate-related aberrations in high numerical-aperture optical disk readout.
    Stallinga S
    Appl Opt; 2005 Feb; 44(6):849-58. PubMed ID: 15751673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computation of astigmatic and trefoil figure errors and misalignments for two-mirror telescopes using nodal-aberration theory.
    Ju G; Yan C; Gu Z; Ma H
    Appl Opt; 2016 May; 55(13):3373-86. PubMed ID: 27140345
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Geometrical theory of aberrations near the axis in classical off-axis reflecting telescopes.
    Chang S; Prata A
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2454-64. PubMed ID: 16302396
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrostatic correction of the chromatic and of the spherical aberration of charged-particle lenses (part II).
    Weitbssäcker C; Rose H
    J Electron Microsc (Tokyo); 2002; 51(1):45-51. PubMed ID: 12003241
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential method for determining third-order derivative matrix of ray with respect to source ray variables at spherical boundary.
    Lin PD
    Opt Express; 2020 Nov; 28(23):35306-35320. PubMed ID: 33182988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration.
    Tabernero J; Piers P; Benito A; Redondo M; Artal P
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4651-8. PubMed ID: 17003464
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relating wavefront error, apodization, and the optical transfer function: general case.
    Schwiegerling J
    J Opt Soc Am A Opt Image Sci Vis; 2017 May; 34(5):726-731. PubMed ID: 28463340
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization method for ultra-wide-angle and panoramic optical systems.
    Lu LJ; Hu XY; Sheng CY
    Appl Opt; 2012 Jun; 51(17):3776-86. PubMed ID: 22695655
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aberrations for grazing incidence telescopes.
    Saha TT
    Appl Opt; 1988 Apr; 27(8):1492-8. PubMed ID: 20531603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nodal aberration properties of coaxial imaging systems using Zernike polynomial surfaces.
    Yang T; Zhu J; Jin G
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):822-36. PubMed ID: 26366906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations.
    Bimurzaev SB; Aldiyarov NU; Yakushev EM
    Microscopy (Oxf); 2017 Oct; 66(5):356-365. PubMed ID: 29016920
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical quality comparison between spherical and aspheric toric intraocular lenses.
    Pérez-Vives C; Ferrer-Blasco T; García-Lázaro S; Albarrán-Diego C; Montés-Micó R
    Eur J Ophthalmol; 2014; 24(5):699-706. PubMed ID: 24519505
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical response to LASIK surgery for myopia from total and corneal aberration measurements.
    Marcos S; Barbero S; Llorente L; Merayo-Lloves J
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3349-56. PubMed ID: 11726644
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of age on ocular wavefront aberration changes with accommodation.
    Iida Y; Shimizu K; Ito M; Suzuki M
    J Refract Surg; 2008 Sep; 24(7):696-701. PubMed ID: 18811112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extension of a fifth-order intrinsic aberration for a soft x-ray and vacuum ultraviolet optical system from a one- to two-dimension field light source.
    Cao Y; Shen Z
    Opt Express; 2022 Aug; 30(17):30260-30270. PubMed ID: 36242133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.