BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1941237)

  • 1. Use of ultrasound in the measurement of subcutaneous fat and prediction of total body fat in dogs.
    Wilkinson MJ; McEwan NA
    J Nutr; 1991 Nov; 121(11 Suppl):S47-50. PubMed ID: 1941237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of light lamb carcass composition by in vivo real-time ultrasonography at four anatomical locations.
    Ripoll G; Joy M; Alvarez-Rodriguez J; Sanz A; Teixeira A
    J Anim Sci; 2009 Apr; 87(4):1455-63. PubMed ID: 19098249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo estimation of goat carcass composition and body fat partition by real-time ultrasonography.
    Teixeira A; Joy M; Delfa R
    J Anim Sci; 2008 Sep; 86(9):2369-76. PubMed ID: 18469057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating body fat in mature beagle bitches.
    Anderson DB; Corbin JE
    Lab Anim Sci; 1982 Aug; 32(4):367-70. PubMed ID: 7144110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of carcass composition by ultrasound measurements in 4 anatomical locations of 3 commercial categories of lamb.
    Ripoll G; Joy M; Sanz A
    J Anim Sci; 2010 Oct; 88(10):3409-18. PubMed ID: 20562368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ultrasound and skinfold measurements in assessment of subcutaneous and total fatness.
    Borkan GA; Hults DE; Cardarelli J; Burrows BA
    Am J Phys Anthropol; 1982 Jul; 58(3):307-13. PubMed ID: 7124924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo assessment of subcutaneous fat in dogs by real-time ultrasonography and image analysis.
    Payan-Carreira R; Martins L; Miranda S; Olivério P; Silva SR
    Acta Vet Scand; 2016 Oct; 58(Suppl 1):58. PubMed ID: 27766975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound measurement of subcutaneous adipose tissue thickness accurately predicts total and segmental body fat of young adults.
    Leahy S; Toomey C; McCreesh K; O'Neill C; Jakeman P
    Ultrasound Med Biol; 2012 Jan; 38(1):28-34. PubMed ID: 22104525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of ultrasound scanning and body condition score to evaluate composition traits in mature beef cows.
    Emenheiser JC; Tait RG; Shackelford SD; Kuehn LA; Wheeler TL; Notter DR; Lewis RM
    J Anim Sci; 2014 Sep; 92(9):3868-77. PubMed ID: 25057026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo estimation of sheep carcass composition using real-time ultrasound with two probes of 5 and 7.5 MHz and image analysis.
    Silva SR; Afonso JJ; Santos VA; Monteiro A; Guedes CM; Azevedo JM; Dias-da-Silva A
    J Anim Sci; 2006 Dec; 84(12):3433-9. PubMed ID: 17093238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Correlation between skinfold thickness and ultrasonography in the study of subcutaneous adipose tissue in females].
    Cataldo MG; Brancato D; Brancato G; Verga S; Buscemi S; Licata G
    Ann Ital Med Int; 1997; 12(1):15-9. PubMed ID: 9409947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body composition in sport: a comparison of a novel ultrasound imaging technique to measure subcutaneous fat tissue compared with skinfold measurement.
    Müller W; Horn M; Fürhapter-Rieger A; Kainz P; Kröpfl JM; Maughan RJ; Ahammer H
    Br J Sports Med; 2013 Nov; 47(16):1028-35. PubMed ID: 24055780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skinfold caliper and ultrasound assessments of change in the distribution of subcutaneous fat during adolescent pregnancy.
    Stevens-Simon C; Thureen P; Barrett J; Stamm E
    Int J Obes Relat Metab Disord; 2001 Sep; 25(9):1340-5. PubMed ID: 11571597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ultrasound and skinfold caliper measurement of subcutaneous fat tissue.
    Weits T; van der Beek EJ; Wedel M
    Int J Obes; 1986; 10(3):161-8. PubMed ID: 3531051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of body fat from ultrasound measures of subcutaneous fat and circumferences in obese women.
    Fanelli MT; Kuczmarski RJ; Hirsch M
    Int J Obes; 1988; 12(2):125-32. PubMed ID: 3290131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between absorptiometry and ultrasound measurements of abdominal subcutaneous fat tissue in postmenopausal women.
    Teixeira PJ; Rocha P; Carnero E; Sardinha LB
    Acta Diabetol; 2003 Oct; 40 Suppl 1():S76-8. PubMed ID: 14618439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonography detection of small intra-abdominal fat variations.
    Armellini F; Zamboni M; Rigo L; Bergamo-Andreis IA; Robbi R; De Marchi M; Bosello O
    Int J Obes; 1991 Dec; 15(12):847-52. PubMed ID: 1794927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of subcutaneous fat thickness with high frequency pulsed ultrasound: comparisons with a caliper and a radiographic technique.
    Black D; Vora J; Hayward M; Marks R
    Clin Phys Physiol Meas; 1988 Feb; 9(1):57-64. PubMed ID: 3282753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of subcutaneous adipose tissue using ultrasound images.
    Ramirez ME
    Am J Phys Anthropol; 1992 Nov; 89(3):347-57. PubMed ID: 1485642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical note: A novel technique to assess internal body fat of cattle by using real-time ultrasound.
    Ribeiro FR; Tedeschi LO; Stouffer JR; Carstens GE
    J Anim Sci; 2008 Mar; 86(3):763-7. PubMed ID: 18042813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.