BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19412660)

  • 41. Inhibitor-κB kinase attenuates Hsp90-dependent endothelial nitric oxide synthase function in vascular endothelial cells.
    Natarajan M; Konopinski R; Krishnan M; Roman L; Bera A; Hongying Z; Habib SL; Mohan S
    Am J Physiol Cell Physiol; 2015 Apr; 308(8):C673-83. PubMed ID: 25652452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitric oxide and hypoxia.
    Galkin A; Higgs A; Moncada S
    Essays Biochem; 2007; 43():29-42. PubMed ID: 17705791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Asymmetric dimethylarginine inhibits HSP90 activity in pulmonary arterial endothelial cells: role of mitochondrial dysfunction.
    Sud N; Wells SM; Sharma S; Wiseman DA; Wilham J; Black SM
    Am J Physiol Cell Physiol; 2008 Jun; 294(6):C1407-18. PubMed ID: 18385287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. L-4F, an apolipoprotein A-1 mimetic, restores nitric oxide and superoxide anion balance in low-density lipoprotein-treated endothelial cells.
    Ou Z; Ou J; Ackerman AW; Oldham KT; Pritchard KA
    Circulation; 2003 Mar; 107(11):1520-4. PubMed ID: 12654610
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Endothelial cell superoxide anion radical generation is not dependent on endothelial nitric oxide synthase-serine 1179 phosphorylation and endothelial nitric oxide synthase dimer/monomer distribution.
    Whitsett J; Martásek P; Zhao H; Schauer DW; Hatakeyama K; Kalyanaraman B; Vásquez-Vivar J
    Free Radic Biol Med; 2006 Jun; 40(11):2056-68. PubMed ID: 16716906
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology.
    Erusalimsky JD; Moncada S
    Arterioscler Thromb Vasc Biol; 2007 Dec; 27(12):2524-31. PubMed ID: 17885213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reoxygenation after hypoxia and glucose depletion causes reactive oxygen species production by mitochondria in HUVEC.
    Therade-Matharan S; Laemmel E; Duranteau J; Vicaut E
    Am J Physiol Regul Integr Comp Physiol; 2004 Nov; 287(5):R1037-43. PubMed ID: 15205181
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase.
    Davis BJ; Xie Z; Viollet B; Zou MH
    Diabetes; 2006 Feb; 55(2):496-505. PubMed ID: 16443786
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization and function of mitochondrial nitric-oxide synthase.
    Giulivi C
    Free Radic Biol Med; 2003 Feb; 34(4):397-408. PubMed ID: 12566065
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential effects on nitric oxide synthase, heat shock proteins and glutathione in human endothelial cells exposed to heat stress and simulated diving.
    Fismen L; Hjelde A; Svardal AM; Djurhuus R
    Eur J Appl Physiol; 2012 Jul; 112(7):2717-25. PubMed ID: 22113731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of nitric oxide with a functional model of cytochrome c oxidase.
    Collman JP; Dey A; Decreau RA; Yang Y; Hosseini A; Solomon EI; Eberspacher TA
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9892-6. PubMed ID: 18632561
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Angiostatin: a negative regulator of endothelial-dependent vasodilation.
    Koshida R; Ou J; Matsunaga T; Chilian WM; Oldham KT; Ackerman AW; Pritchard KA
    Circulation; 2003 Feb; 107(6):803-6. PubMed ID: 12591747
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitric oxide preconditioning regulates endothelial monolayer integrity via the heat shock protein 90-soluble guanylate cyclase pathway.
    Antonova GN; Snead CM; Antonov AS; Dimitropoulou C; Venema RC; Catravas JD
    Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H893-903. PubMed ID: 17012359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase.
    Pritchard KA; Ackerman AW; Gross ER; Stepp DW; Shi Y; Fontana JT; Baker JE; Sessa WC
    J Biol Chem; 2001 May; 276(21):17621-4. PubMed ID: 11278264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide.
    Borutaité V; Brown GC
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):295-9. PubMed ID: 8670121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications.
    Sarti P; Forte E; Mastronicola D; Giuffrè A; Arese M
    Biochim Biophys Acta; 2012 Apr; 1817(4):610-9. PubMed ID: 21939634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration.
    Brown GC; Bolaños JP; Heales SJ; Clark JB
    Neurosci Lett; 1995 Jul; 193(3):201-4. PubMed ID: 7478183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mitochondrial-associated nitric oxide synthase activity inhibits cytochrome c oxidase: implications for breast cancer.
    Sen S; Kawahara B; Chaudhuri G
    Free Radic Biol Med; 2013 Apr; 57():210-20. PubMed ID: 23089229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport.
    Zhao X; He G; Chen YR; Pandian RP; Kuppusamy P; Zweier JL
    Circulation; 2005 Jun; 111(22):2966-72. PubMed ID: 15939832
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitric oxide from inducible nitric oxide synthase sensitizes the inflamed aorta to hypoxic damage via respiratory inhibition.
    Borutaite V; Moncada S; Brown GC
    Shock; 2005 Apr; 23(4):319-23. PubMed ID: 15803054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.