These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 19412827)

  • 1. A novel approach to evaluate abdominal coactivities for optimal spinal stability and compression force in lifting.
    El Ouaaid Z; Arjmand N; Shirazi-Adl A; Parnianpour M
    Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):735-45. PubMed ID: 19412827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative efficiency of abdominal muscles in spine stability.
    Arjmand N; Shirazi-Adl A; Parnianpour M
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):291-9. PubMed ID: 18568826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trunk biomechanics during maximum isometric axial torque exertions in upright standing.
    Arjmand N; Shirazi-Adl A; Parnianpour M
    Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):969-78. PubMed ID: 18513843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of intra-abdominal pressure in the unloading and stabilization of the human spine during static lifting tasks.
    Arjmand N; Shirazi-Adl A
    Eur Spine J; 2006 Aug; 15(8):1265-75. PubMed ID: 16333683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled objective function to study the role of abdominal muscle forces in lifting using the kinematics-driven model.
    El Ouaaid Z; Shirazi-Adl A; Arjmand N; Plamondon A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):54-65. PubMed ID: 21933037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions.
    Arjmand N; Shirazi-Adl A
    J Biomech; 2006; 39(3):510-21. PubMed ID: 16389091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of instruction, surface stability, and load intensity on trunk muscle activity.
    Bressel E; Willardson JM; Thompson B; Fontana FE
    J Electromyogr Kinesiol; 2009 Dec; 19(6):e500-4. PubMed ID: 19054687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of release height on center of pressure and trunk muscle response following sudden release of stoop lifting tasks.
    Chow DH; Cheng AC; Holmes AD; Evans JH
    Appl Ergon; 2003 Nov; 34(6):611-9. PubMed ID: 14559422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seated whole body vibrations with high-magnitude accelerations--relative roles of inertia and muscle forces.
    Bazrgari B; Shirazi-Adl A; Kasra M
    J Biomech; 2008 Aug; 41(12):2639-46. PubMed ID: 18672242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postural and trunk muscle response to sudden release during stoop lifting tasks before and after fatigue of the trunk erector muscles.
    Chow DH; Man JW; Holmes AD; Evans JH
    Ergonomics; 2004 May; 47(6):607-24. PubMed ID: 15204290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal stability and role of passive stiffness in dynamic squat and stoop lifts.
    Bazrgari B; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):351-60. PubMed ID: 17852177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of posture on dynamic back loading during a cable lifting task.
    Gallagher S; Marras WS; Davis KG; Kovacs K
    Ergonomics; 2002 Apr; 45(5):380-98. PubMed ID: 12028722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive equations to estimate spinal loads in symmetric lifting tasks.
    Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C; Parnianpour M
    J Biomech; 2011 Jan; 44(1):84-91. PubMed ID: 20850750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of changes in lordosis on mechanics of the lumbar spine-lumbar curvature in lifting.
    Shirazi-Adl A; Parnianpour M
    J Spinal Disord; 1999 Oct; 12(5):436-47. PubMed ID: 10549710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of kinematics-based model predictions to optimization criteria in static lifting tasks.
    Arjmand N; Shirazi-Adl A
    Med Eng Phys; 2006 Jul; 28(6):504-14. PubMed ID: 16288897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trunk response analysis under sudden forward perturbations using a kinematics-driven model.
    Bazrgari B; Shirazi-Adl A; Larivière C
    J Biomech; 2009 Jun; 42(9):1193-200. PubMed ID: 19375707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations.
    Vera-Garcia FJ; Elvira JL; Brown SH; McGill SM
    J Electromyogr Kinesiol; 2007 Oct; 17(5):556-67. PubMed ID: 16996278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ISSLS prize winner: A novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements.
    Wilke HJ; Rohlmann A; Neller S; Graichen F; Claes L; Bergmann G
    Spine (Phila Pa 1976); 2003 Dec; 28(23):2585-93. PubMed ID: 14652475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.