BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19412897)

  • 21. Digital transcriptome analysis indicates adaptive mechanisms in the heart of a hibernating mammal.
    Brauch KM; Dhruv ND; Hanse EA; Andrews MT
    Physiol Genomics; 2005 Oct; 23(2):227-34. PubMed ID: 16076930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation.
    Yaish MW; Peng M; Rothstein SJ
    Plant J; 2009 Jul; 59(1):123-35. PubMed ID: 19419532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of Torpor in the Gray Mouse Lemur: Transcriptional and Translational Controls and Role of AMPK Signaling.
    Zhang J; Tessier SN; Biggar KK; Wu CW; Pifferi F; Perret M; Storey KB
    Genomics Proteomics Bioinformatics; 2015 Apr; 13(2):103-10. PubMed ID: 26092186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Group hibernation does not reduce energetic costs of young yellow-bellied marmots.
    Armitage KB; Woods BC
    Physiol Biochem Zool; 2003; 76(6):888-98. PubMed ID: 14988804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic rate and body temperature reduction during hibernation and daily torpor.
    Geiser F
    Annu Rev Physiol; 2004; 66():239-74. PubMed ID: 14977403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural hypometabolism during hibernation and daily torpor in mammals.
    Heldmaier G; Ortmann S; Elvert R
    Respir Physiol Neurobiol; 2004 Aug; 141(3):317-29. PubMed ID: 15288602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation.
    Martin SL; Maniero GD; Carey C; Hand SC
    Physiol Biochem Zool; 1999; 72(3):255-64. PubMed ID: 10222320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic depression in hibernation and major depression: an explanatory theory and an animal model of depression.
    Tsiouris JA
    Med Hypotheses; 2005; 65(5):829-40. PubMed ID: 16061329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes.
    Johnston IA; Lee HT; Macqueen DJ; Paranthaman K; Kawashima C; Anwar A; Kinghorn JR; Dalmay T
    J Exp Biol; 2009 Jun; 212(Pt 12):1781-93. PubMed ID: 19482995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver.
    Nelson CJ; Otis JP; Martin SL; Carey HV
    Physiol Genomics; 2009 Mar; 37(1):43-51. PubMed ID: 19106184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cold ischemic organ preservation: lessons from natural systems.
    Storey KB
    J Investig Med; 2004 Jul; 52(5):315-22. PubMed ID: 15551654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hibernation and daily torpor in an armadillo, the pichi (Zaedyus pichiy).
    Superina M; Boily P
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Dec; 148(4):893-8. PubMed ID: 17919955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic rate depression in animals: transcriptional and translational controls.
    Storey KB; Storey JM
    Biol Rev Camb Philos Soc; 2004 Feb; 79(1):207-33. PubMed ID: 15005178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR.
    Serkova NJ; Rose JC; Epperson LE; Carey HV; Martin SL
    Physiol Genomics; 2007 Sep; 31(1):15-24. PubMed ID: 17536023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging role of epigenetics in the actions of alcohol.
    Shukla SD; Velazquez J; French SW; Lu SC; Ticku MK; Zakhari S
    Alcohol Clin Exp Res; 2008 Sep; 32(9):1525-34. PubMed ID: 18616668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic suppression in mammalian hibernation: the role of mitochondria.
    Staples JF
    J Exp Biol; 2014 Jun; 217(Pt 12):2032-6. PubMed ID: 24920833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A functional transcriptomic analysis in the relict marsupial Dromiciops gliroides reveals adaptive regulation of protective functions during hibernation.
    Nespolo RF; Gaitan-Espitia JD; Quintero-Galvis JF; Fernandez FV; Silva AX; Molina C; Storey KB; Bozinovic F
    Mol Ecol; 2018 Nov; 27(22):4489-4500. PubMed ID: 30240506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences.
    Muleme HM; Walpole AC; Staples JF
    Physiol Biochem Zool; 2006; 79(3):474-83. PubMed ID: 16691514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential expression and functional constraint of PRL-2 in hibernating bat.
    Yuan L; Chen J; Lin B; Zhang J; Zhang S
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Dec; 148(4):375-81. PubMed ID: 17683965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential posttranslational modification of mitochondrial enzymes corresponds with metabolic suppression during hibernation.
    Mathers KE; Staples JF
    Am J Physiol Regul Integr Comp Physiol; 2019 Aug; 317(2):R262-R269. PubMed ID: 31067076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.