BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19412972)

  • 1. Detection and identification of optical activity using polarimetry--applications to biophotonics, biomedicine and biochemistry.
    Bahar E
    J Biophotonics; 2008 Aug; 1(3):230-7. PubMed ID: 19412972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of polarimetric techniques for the identification of biological and chemical materials using Mueller matrices, lateral waves, and surface waves.
    Bahar E
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2139-47. PubMed ID: 21979520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear optical spectroscopy of chiral molecules.
    Fischer P; Hache F
    Chirality; 2005 Oct; 17(8):421-37. PubMed ID: 16082658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of circular dichroism spectroscopy for studying the chiral molecular self-assembly: an overview.
    Gottarelli G; Lena S; Masiero S; Pieraccini S; Spada GP
    Chirality; 2008 Mar; 20(3-4):471-85. PubMed ID: 17918751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the absolute configuration of a chiral oxadiazol-3-one calcium channel blocker, resolved using chiral chromatography, via concerted density functional theory calculations of its vibrational circular dichroism, electronic circular dichroism, and optical rotation.
    Stephens PJ; Devlin FJ; Gasparrini F; Ciogli A; Spinelli D; Cosimelli B
    J Org Chem; 2007 Jun; 72(13):4707-15. PubMed ID: 17516678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotationally resolved optical rotation and circular dichroism effects for symmetric top molecules induced by a resonant circularly polarized pumping optical field.
    Zheng RH; Wei WM
    J Phys Chem A; 2006 Jul; 110(29):9282-91. PubMed ID: 16854045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of chiral fields in a symmetric environment.
    Schäferling M; Yin X; Giessen H
    Opt Express; 2012 Nov; 20(24):26326-36. PubMed ID: 23187487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media.
    Hadley KC; Vitkin IA
    J Biomed Opt; 2002 Jul; 7(3):291-9. PubMed ID: 12175277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae).
    Hegedüs R; Szél G; Horváth G
    Vision Res; 2006 Sep; 46(17):2786-97. PubMed ID: 16564066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory.
    Krykunov M; Kundrat MD; Autschbach J
    J Chem Phys; 2006 Nov; 125(19):194110. PubMed ID: 17129092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarized photon-pairs heterodyne polarimetry for ultrasensitive optical activity detection of a chiral medium.
    Chou C; Chiang KH; Liao KY; Chang YF; Lin CE
    J Phys Chem B; 2007 Aug; 111(33):9919-22. PubMed ID: 17663577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral gold nanoparticles.
    Gautier C; Bürgi T
    Chemphyschem; 2009 Feb; 10(3):483-92. PubMed ID: 19142928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties of a planar metamaterial with chiral symmetry breaking.
    Huang WX; Zhang Y; Tang XM; Cai LS; Zhao JW; Zhou L; Wang QJ; Huang CP; Zhu YY
    Opt Lett; 2011 Sep; 36(17):3359-61. PubMed ID: 21886210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.
    Cheon S; Cho M
    J Phys Chem A; 2009 Mar; 113(11):2438-45. PubMed ID: 19228046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mueller-matrix characterization of beetle cuticle: polarized and unpolarized reflections from representative architectures.
    Hodgkinson I; Lowrey S; Bourke L; Parker A; McCall MW
    Appl Opt; 2010 Aug; 49(24):4558-67. PubMed ID: 20733627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination.
    Qi J; He H; Lin J; Dong Y; Chen D; Ma H; Elson DS
    J Biophotonics; 2018 Apr; 11(4):e201700139. PubMed ID: 29131523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissymmetries in fluorescence excitation and emission from single chiral molecules.
    Hassey-Paradise R; Cyphersmith A; Tilley AM; Mortsolf T; Basak D; Venkataraman D; Barnes MD
    Chirality; 2009; 21 Suppl 1():E265-76. PubMed ID: 20014034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental validation of optimum input polarization states for Mueller matrix determination with a dual photoelastic modulator polarimeter.
    Gribble A; Layden D; Vitkin IA
    Opt Lett; 2013 Dec; 38(24):5272-5. PubMed ID: 24322235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The induction of chirality in sol-gel materials.
    Marx S; Avnir D
    Acc Chem Res; 2007 Sep; 40(9):768-76. PubMed ID: 17591744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving enantiomers using the optical angular momentum of twisted light.
    Brullot W; Vanbel MK; Swusten T; Verbiest T
    Sci Adv; 2016 Mar; 2(3):e1501349. PubMed ID: 26998517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.