These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19412982)

  • 1. A classification method of different motor imagery tasks based on fractal features for brain-machine interface.
    Phothisonothai M; Nakagawa M
    J Integr Neurosci; 2009 Mar; 8(1):95-122. PubMed ID: 19412982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG signal classification method based on fractal features and neural network.
    Phothisonothai M; Nakagawa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3880-3. PubMed ID: 19163560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features.
    Hsu WY
    J Neurosci Methods; 2010 Jun; 189(2):295-302. PubMed ID: 20381529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring differences between left and right hand motor imagery via spatio-temporal EEG microstate.
    Liu W; Liu X; Dai R; Tang X
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):258-266. PubMed ID: 29096552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet-based fractal features with active segment selection: application to single-trial EEG data.
    Hsu WY; Lin CC; Ju MS; Sun YN
    J Neurosci Methods; 2007 Jun; 163(1):145-60. PubMed ID: 17379316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor Imagery EEG Classification for Patients with Amyotrophic Lateral Sclerosis Using Fractal Dimension and Fisher's Criterion-Based Channel Selection.
    Liu YH; Huang S; Huang YD
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal-based EEG data analysis of body parts movement imagery tasks.
    Phothisonothai M; Nakagawa M
    J Physiol Sci; 2007 Aug; 57(4):217-26. PubMed ID: 17637165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research of movement imagery EEG based on Hilbert-Huang transform and BP neural network].
    Jin H; Zhang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):249-53. PubMed ID: 23858742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fresh look at functional link neural network for motor imagery-based brain-computer interface.
    Hettiarachchi IT; Babaei T; Nguyen T; Lim CP; Nahavandi S
    J Neurosci Methods; 2018 Jul; 305():28-35. PubMed ID: 29733940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractals properties of EEG during event-related desynchronization of motor imagery.
    Nguyen NQ; Truong QD; Kondo T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4146-9. PubMed ID: 26737207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor imagery task classification for brain computer interface applications using spatiotemporal principle component analysis.
    Vallabhaneni A; He B
    Neurol Res; 2004 Apr; 26(3):282-7. PubMed ID: 15142321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neural network-based optimal spatial filter design method for motor imagery classification.
    Yuksel A; Olmez T
    PLoS One; 2015; 10(5):e0125039. PubMed ID: 25933101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
    Mahmoudi M; Shamsi M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison approach toward finding the best feature and classifier in cue-based BCI.
    Boostani R; Graimann B; Moradi MH; Pfurtscheller G
    Med Biol Eng Comput; 2007 Apr; 45(4):403-12. PubMed ID: 17318660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Fractal and Local Binary Pattern Features for Classification of ECOG Motor Imagery Tasks Obtained from the Right Brain Hemisphere.
    Xu F; Zhou W; Zhen Y; Yuan Q; Wu Q
    Int J Neural Syst; 2016 Sep; 26(6):1650022. PubMed ID: 27255798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification.
    She Q; Chen K; Ma Y; Nguyen T; Zhang Y
    Comput Intell Neurosci; 2018; 2018():9593682. PubMed ID: 30510569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-trial motor imagery classification using asymmetry ratio, phase relation, wavelet-based fractal, and their selected combination.
    Hsu WY
    Int J Neural Syst; 2013 Apr; 23(2):1350007. PubMed ID: 23578057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine.
    Gao L; Cheng W; Zhang J; Wang J
    Rev Sci Instrum; 2016 Aug; 87(8):085110. PubMed ID: 27587163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.